PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of applied coating time on nano hydroxyapatite/ chitosan coating on 316L stainless steel alloy using electrophoretic deposition for biomedical application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, an electrophoretic deposition (EPD) method was utilized to cover a biocompatible stainless steel medical grid type 316L with nanoparticles of hydroxyapatite (HA). ln conjunction with the biopolymer chitosan (CHT), as a binder, it enhances the adhesive capabilities of a substrate. The chosen bio-coating method is the EPD process of 316L Stainless Steel alloy due to its ease of use, low cost, and capacity to coat intricate items. Consequently, this research studied different concentrations of the materials utilized, the most significant variables, and their effects in order to acquire the optimal attributes for the coating layer, using voltage applied and deposition time. The coating periods were 2, 4 and 6 minutes, and the concentrations were 4, 7 and 10 g/L, while the voltages were modulated between 20, 40, and 60 volts. In spite of the fact that the metallic medical applications and bone replacement have made substantial and fruitful progress, difficulties still persist. The coating procedures have a significant impact on how well the composite materials work in the biological devices. To improve the properties of composites used in biomedicine, coating them is an essential step. X-ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM) were used to examine the deposited coatings, and the Zeta potential for suspensions was computed.
Twórcy
  • University of Diyala, Iraq
  • University of Diyala, Iraq
  • University of Diyala, Iraq
  • University of Diyala, Iraq
  • Amirkabir University of Technology, Tehran, Iraq
Bibliografia
  • 1. Ceyhun K. and Kacar R. In vitro bioactivity and corrosion properties of laser beam welded medical grade AISI 316L stainless steel in simulated body fluid, Int. J. Electrochem. Sci., 2016, 11(4), 2762–2777.
  • 2. Neirinck B., Fransaer J., Van der Biest O., and Vleugels J. Aqueous electrophoretic deposition in asymmetric AC electric fields (AC–EPD), Electrochem. commun., 2009, 11(1), 57–60.
  • 3. Goodman S.B., Yao Z., Keeney M., and Yang F. The future of biologic coatings for orthopaedic implants, Biomaterials, 2013, 34(13), 3174–3183.
  • 4. Chew K.-K., Zein S.H.S., Ahmad A. L., McPhail D.S., and Abdullah M.F. The electrochemical studies of the corrosion resistance behaviour of hydroxyapatite coatings on stainless steel fabricated by electrophoretic deposition, J. Ind. Eng. Chem., 2013, 19(4), 1123–1129.
  • 5. Soundrapandian C., Bharati S., Basu D., and Datta S. Studies on novel bioactive glasses and bioactive glass–nano-HAp composites suitable for coating on metallic implants, Ceram. Int., 2011, 37(3), 759–769.
  • 6. Farnoush H., Mohandesi J.A., Fatmehsari D.H., and Moztarzadeh F. A kinetic study on the electrophoretic deposition of hydroxyapatite–titania nanocomposite based on a statistical approach, Ceram. Int., 2012, 38(8), 6753–6767.
  • 7. Xiao Y., Song L., Liu X., Yi J. Nanostructured bioactive glass–ceramic coatings deposited by the liquid precursor plasma spraying process, Appl. Surf. Sci., 2011, 257(6), 1898–1905.
  • 8. Floristán M., Fontarnau R., Killinger A., and Gadow R. Development of electrically conductive plasma sprayed coatings on glass ceramic substrates, Surf. Coatings Technol., 2010, 205(4), 1021–1028.
  • 9. Wei X., Xi T., Zheng Y., Zhang C., and Huang W. In vitro comparative effect of three novel borate bioglasses on the behaviors of osteoblastic MC3T3-E1 cells, J. Mater. Sci. Technol., 2014, 30(10), 979–983.
  • 10. Rahaman M.N., Bal B.S., and Huang W. Emerging developments in the use of bioactive glasses for treating infected prosthetic joints, Mater. Sci. Eng. C, 2014, 41, 224–231,
  • 11. Jia W.-T., Zhang X., Zhang C.-Q., et al. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite, Int. J. Pharm., 2010, 387(1–2), 184–186.
  • 12. Stoch A., Brożek A., Kmita G., Stoch J., Jastrzębski W., and Rakowska A. Electrophoretic coating of hydroxyapatite on titanium implants, J. Mol. Struct., 2001, 596(1–3), 191–200.
  • 13. Yoon D. H. and Muksin K. Alternating current electrophoretic deposition (AC-EPD) of SiC nanopar- ticles in an aqueous suspension for the fabrication of SiCf/SiC composites, Dig. J. Nanomater. Bios., 2015, 10, 1103,
  • 14. Seuss S., Lehmann M., and Boccaccini A. R. Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings, Int. J. Mol. Sci., 2014, 15(7), 12231–12242.
  • 15. Duta L. and Popescu A. C. Current status on pulsed laser deposition of coatings from animal-origin calcium phosphate sources, Coatings, 2019, 9(5), 335.
  • 16. Mahmoodi S., Sorkhi L., Farrokhi-Rad M., and Shahrabi T. Electrophoretic deposition of hydroxyapatitechitosan nanocomposite coatings in different alcohols, Surf. Coatings Technol., 2013, 216, 106–114.
  • 17. Eliaz N. and Metoki N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications, Materials. 2017, 10, 334.
  • 18. Abbass M. K., Khadhim M. J., Jasim A. N., and Issa M. J. A Study the Effect of Porosity of Bio-active Ceramic Hydroxyapatite Coated by Electrophoretic Deposition on the Ti6Al4V Alloy Substrate, in Journal of Physics: Conference Series, IOP Publishing, 2021, 12035.
  • 19. Hazim M. Optimizing of Electrophoretic Deposition and Characterization of Nanobiocomposites Functionally Graded Hydroxyapatite-Yttria Partially Stabilized Zirconia. University of Technology 2017 phd, Thesis.
  • 20. Iman Adnan Anoon, Advance Coating on 316L Stainless Steel Substrate Using an Electrophoretic Deposition for Biomedical Application. phd thesis University of Technology.
  • 21. Sorkhi L., Farrokhi M., Shahrabi T. Electrophoretic deposition of hydroxyapatite chitosan–titania on stainless steel 316 L. Surfaces 2019, 2,458–467.
  • 22. Nuswantoro N., Juliadmi D., Fajri H., Budiman A., Manjas M. Hydroxyapatite Coatings on titanium alloy TNTZ using electrophoretic deposition. Materials Science and Engineering, 2019, 602, 1–12.
  • 23. Drevet R., Ben Jaber N., Fauré J., Tara A., Ben Cheikh Larbi A., and Benhayoune H. Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates, Surf. Coatings Technol., 2016, 301, 94–99, https://doi.org/10.1016/j. surfcoat.2015.12.058
  • 24. Chen Q., Liu Y., Yao Q.Q., Yu S.S., Zheng K., Pishetesriedr M., Boccacini A.R. Multilayered biocoactive coatings with drug delivery capability by electrophoretic deposition combined with layer by layer deposition, Advanced Biomaterials and Devices in Medicine, 2014, 1, 18–27.
  • 25. Frantiska F., Esther M., Begona F. Electrophoretic deposition of gelatin/hydr-oxyapatite composite coatings onto a stainless steel substrate, Engineering Materials, 2015, 654, 195–199.
  • 26. Minhas B., Hanif Z., Nadeem M.H., et al., The electrochemical and in-vitro study on electrophoretic deposition of chitosan/gelatin/hydroxyapatite coating on 316L stainless steel, Carbohydr. Polym. Technol. Appl., 2023, 5, 100322.
  • 27. Nuswantoro N.F., Budiman I., Septiawarman A., Tjong D.H., and Manjas M. Effect of Applied Voltage and Coating Time on Nano Hydroxyapatite Coating on Titanium Alloy Ti6Al4V Using Electrophoretic Deposition for Orthopaedic Implant Application, in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, 12004.
  • 28. Jasim A.N., Khethier Abbass M., Jasim M., and Salah K. Synthesis, Characterization and Optimization of Electrophoretic Deposition (EPD) Parameters of YSZ Layer on Ti-6Al-4V Alloy substrate, in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, 12082.
  • 29. Abbass M.K., Khadhim M.J., Jasim A.N., Issa M.J., and Khashan K.S. Fabrication and optimization of electrophoretic deposition parameters using alternating current by Taguchi design, Al-Nahrain J. Eng. Sci., 2021, 24(1), 8–15.
  • 30. Hussein, Marwan B., Ali M. Mustafa, and Makarim H. Abdulkareem. A Comparative Study on Dip Coating and Corrosion Behavior of Ti-13Zr-13Nb and Commercially Pure Titanium Alloys Coated with YSZ by Taguchi Design.” Salud, Ciencia y Tecnología-Serie de Conferencias 2024, 3, 847–847.
  • 31. Hussein, Marwan B., Ali M. Mustafa, Makarim H. Abdulkareem, and Ahmed A. Alamiery. Comparative corrosion performance of YSZ-coated Ti- 13Zr-13Nb alloy and commercially pure titanium in orthopedic implants. South African Journal of Chemical Engineering 2024, 48, 40–54.
  • 32. Salman J.M. and Aziz M.L. Some properties of biomedical Ti6al4v alloy in different solutions, Iraqi J. Mech. Mater. Eng., 2019, 19(2), 138–156.
  • 33. Al-Bawee A., Khodair Z.T., Hussein A.K., and Jasim A.N. Enhancing biocompatibility and osseointegration of medical implants using ti based nanocomposite coatings, Multidiscip. Sci. J., 2024, 6(9), 2024183.
  • 34. Wu A., Vilarinho P.M., and Kingon A.I. Electrophoretic deposition of lead zirconate titanate films on metal foils for embedded components, J. Am. Ceram. Soc., 2006, 89(2), 575–581.
  • 35. Hussein, Marwan B., Ali M. Mustafa, and Makarim H. Abdulkareem. A comparative study on dip coating and corrosion behavior of Ti-13Zr-13Nb and commercially pure titanium alloys coated with YSZ by Taguchi design. Salud, Ciencia y Tecnología- Serie de Conferencias 3, 2024, 847–847.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba324cb4-46f3-4f03-84a2-05b654dfe660
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.