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Abstract: The output regulation problem for distributed pa-
rameter systems, see e.g. Byrnes, Lauko, Gillian and Shubov (2000)
and Paunonen (2011), and the observer design problem for such
systems, see e.g. Emirsajłow (2012), are examples of important
control problems, where analysis of infinite-dimensional algebraic
Sylvester equations plays a crucial role. This paper studies bounded
perturbations of the unbounded operators of the algebraic infinite-
dimensional Sylvester equation. We derive some estimate on the
perturbation operator under which the algebraic Sylvester equation
preserves a unique solution or, in the control systems terminology,
a solution is robust under small bounded perturbations. In our ap-
proach we employ the concept of an implemented semigroup, see e.g.
Alber (2001) and Emirsajłow (2012), which is a special case of the
so-called bi-continuous semigroup, e.g. Farkas (2004).

Keywords: distributed parameter systems, algebraic Sylvester equa-
tion, bounded perturbations, implemented semigroup.

1. Introduction

There are several control problems for distributed parameter systems, where
analysis of infinite-dimensional algebraic Sylvester equations plays a crucial role.
The robustness issues in such problems lead to the study of infinite-dimensional
Sylvester equations under various perturbations. For examples see Byrnes et
al. (2000), Paunonen (2011) and Emirsajłow (2012). This paper is devoted to
the class of general linear bounded perturbations. For this class we derive a
sufficient condition on the perturbation operator norm, which guarantees that
the Sylvester equation preserves a unique solution. As the main mathematical
tool we employ the implemented semigroup concept, which seems to be the
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right framework for the infinite-dimensional Sylvester equations both in the
differential and the algebraic form (see, e.g. Emirsajłow and Townley, 2005,
and Emirsajłow, 2012, and references cited therein).

We start with a short introduction of the concept of an implemented semi-
group (see, e.g. Alber, 2001, Emirsajłow and Townley, 2005, Emirsajłow, 2012).
For this purpose we need the following notation and assumptions:

• HA and HE are Hilbert spaces (identified with their duals) with scalar
products 〈·, ·〉A and 〈·, ·〉E .

• H := L (HE , HA) is a Banach space of linear bounded operators from HE

into HA with the norm ‖ · ‖. (H, ‖ · ‖) stands for L (HE , HA) equipped
with the uniform operator topology (induced by ‖·‖) and (H, τ) stands for
L (HE , HA) equipped with the strong operator topology τ , i.e. topology
induced by the family of seminorms P = {ph}h∈B1(HE), where ph(X) =

‖Xh‖A for X ∈ H and h ∈ HE, and B1(H
E) is a unit ball in HE .

• A is a linear, unbounded operator on HA generating a strongly continuous
semigroup of operators (T (t))t≥0 ⊂ L (HA). HA

1 = D(A) is a Hilbert
space with the scalar product 〈·, ·〉A1 = 〈(λI −A)(·), (λI −A)(·)〉A and the
induced norm ‖ · ‖A1 , where λ ∈ ρ(A).

• E is a linear, unbounded operator on HE generating a strongly continuous
semigroup of operators (S(t))t≥0 ⊂ L (HE). Analogously as above, we
define HE

1 = D(E).
Using the two strongly continuous semigroups (T (t))t≥0 ⊂ L (HA) and
(S(t))t≥0 ⊂ L (HE) generated by A and E, respectively, we can define another
semigroup.

Definition 1.1 The family (U(t))t≥0 ⊂ L (H), defined as follows

U(t)X = T (t)XS(t), X ∈ H, t ≥ 0 , (1)

is called the implemented semigroup.

It turns out that the family (U(t))t≥0 ⊂ L (H) is a semigroup and for every
X ∈ H satisfies the continuity condition U(·)X ∈ C([0,∞); (H, τ)). Such a
family is said to be strongly τ -continuous. In general this family is not a C0-
semigroup (strongly ‖ · ‖-continuous in our terminology) unless both operators
A and E are bounded. However, in the infinite-dimensional systems and control
theory the really interesting case is when both A and E are unbounded.

Definition 1.2 The infinitesimal generator A of the implemented semigroup
(U(t))t≥0 ⊂ L (H) is defined as the limit

AX = τ- lim
tց0

U(t)X −X

t
, X ∈ D(A) , (2)

where D(A) ⊂ H is the domain of A defined as follows

D(A) = {X ∈ H : τ- lim
tց0

U(t)X −X

t
exists } . (3)
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For the domain D(A) ∈ H and the generator A we have:
(a) X ∈ H belongs to D(A) if and only if the restriction of X to HE

1 belongs
to L (HE

1 , HA
1 ) and an extension of (AX + XE) ∈ L (HE

1 , HA) to HE

belongs to H.
(b) A has the following explicit representation

(AX)h = AXh+XEh , X ∈ D(A) , h ∈ HE
1 ,

where by (a) the right hand side of this equality is well-defined in HA.
Basic properties of the implemented semigroup can be summarized as follows:

(c) If X ∈ D(A), then (U(t)X)t≥0 ⊂ D(A) and is τ -continuously differen-
tiable in t, i.e. U(·)X ∈ C1([0,∞); (H, τ)), and

d

dt
U(t)X = A(U(t)X) = U(t)(AX) , t ≥ 0 . (4)

(d) The domain D(A) is sequentially dense in (H, τ), which means that for
every X ∈ H there exists a ‖·‖-bounded sequence (Xn)n∈N ⊂ D(A) which
is convergent to X in (H, τ). It should be emphasized that in general D(A)
is not dense in (H, ‖ · ‖).

(e) The operator (A,D(A)) is sequentially closed in (H, τ), which means that
for all sequences (Xn)n∈N ⊂ D(A) such that (Xn)n∈N is ‖ ·‖-bounded and
τ - limn→∞ Xn = X ∈ H and (AXn)n∈N is ‖ · ‖-bounded and τ - limn→∞

AXn = Y ∈ H, we have X ∈ D(A) and Y = AX .
(f) The following equality holds

‖U(t)‖L (H) = ‖T (t)‖A‖S(t)‖E , (5)

where t ≥ 0, and if ω0(T ) is the growth bound of (T (t))t≥0 ⊂ L (HA),
ω0(S) is the growth bound of (S(t))t≥0 ⊂ L (HE) and ω0(U) is the growth
bound of (U(t))t≥0 ⊂ L (H), then

ω0(U) = ω0(T ) + ω0(S) . (6)

(g) The following inclusion holds

Cω0(T )+ω0(S) ⊂ ρ(A) , (7)

where we use the notation

Cω := {λ ∈ C : Reλ > ω} ,

ρ(A) denotes the resolvent set of A, and for λ ∈ Cω0(T )+ω0(S) the resolvent
is explicitly given by

R(λ,A)X := (λI −A)−1X (8)

=

∫ ∞

0

e−λtU(t)X dt

=

∫ ∞

0

e−λt T (t)XS(t) dt , X ∈ H ,
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where the integrals are convergent in (H, τ). Moreover, for every λ ∈
Cω0(U), ω ∈ (ω0(U),Re λ) and some Cω ≥ 1 we have

‖U(t)‖L (H) ≤ Cωe
ωt for all t ≥ 0 (9)

and

‖R(λ,A)‖L (H) ≤
Cω

Reλ− ω
. (10)

• Throughout the rest of the paper we assume that λ ∈ Cω0(T )+ω0(S). This
condition is always satisfied for sufficiently large Reλ ∈ R.

• H1 = D(A) denotes the Banach space with the norm

‖ X‖1 = ‖(λI − A)X‖ , X ∈ D(A) . (11)

In H1 we distinguish the uniform operator topology induced by the norm
‖·‖1 and the strong operator topology τ1 induced by a family of seminorms
P1 = {p1h}h∈B1(HE), where

p1h(X) = ph((λI − A)X) = ‖(λI − A)Xh‖A

for X ∈ D(A) and h ∈ HE .

2. Algebraic Sylvester equation

It follows from (4) that if Z0 ∈ H1, then the expression

Z(t) = U(t)Z0 = T (t)Z0S(t) , t ≥ 0 , (12)

satisfies the following conditions

Z(t) ∈ H1 , Ż(t) = A(U(t)Z0) ∈ H , Z(0) = Z0 , t ≥ 0 , (13)

which show that (Z(t))t≥0 can be viewed as a solution to the initial value prob-
lem (13). However, the differentiation in (13) is understood in (H, τ) and in
general does not make sense in (H, ‖ · ‖). Thus, the expression (12) can be
regarded as a strong solution of the initial value problem

Ż(t) = AZ(t) , t ≥ 0 , Z(0) = Z0 , (14)

but we have to consider this problem on (H, τ).
We refer to (14) as the homogeneous Cauchy problem and since we have

(Z(t))t≥0 ⊂ H1, then we can rewrite the differential equation (14) in the more
explicit form

Ż(t)h = AZ(t)h+ Z(t)Eh , t ≥ 0 , Z(0) = Z0 , h ∈ HE
1 , (15)

where the equality holds in HA. In this case we refer to the differential equation
(15) as the homogeneous differential Sylvester equation (see Emirsajłow, 2012;
Phong, 1991).
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The implemented semigroup approach can be further used to study alge-
braic operator equations corresponding to differential operator equations (14)
and (15).

Proposition 2.1 Let ω > ω0(U) = ω0(T ) + ω0(S), then for every F ∈ H the
following algebraic equation

(ωI −A)Z = F , (16)

equivalently, the algebraic Sylvester equation (see Phong, 1991; Emirsajłow,
2012)

ωZ −AZh− ZEh = Fh , h ∈ HE
1 , (17)

which holds in HA, has a unique solution Z ∈ H1. Moreover, this solution is
explicitly given by the expression

Z = R(ω,A)F =

∫ ∞

0

e−ωtU(t)F dt

=

∫ ∞

0

e−ωtT (t)FS(t) dt . (18)

Proof 2.2 The assumption ω > ω0(U) implies that ω ∈ ̺(A) and hence the
operator ωI − A has a bounded inverse R(ω,A) = (ωI − A)−1 ∈ L (H). This
means that for every F ∈ H the equation (16) has a unique solution Z ∈ H1

given by Z = R(ω,A)F and since for ω > ω0(U) the resolvent R(ω,A) admits
integral representation (8), we obtain (18).

In the case when the implemented semigroup (U(t))t≥0 ⊂ L (H) is exponen-
tially stable, we can complement Proposition 2.1.

Corollary 2.3 Let ω0(U) = ω0(T ) + ω0(S) < 0, then for every F ∈ H the
following algebraic equation

−AZ = F , (19)

equivalently, the algebraic Sylvester equation

−AZh− ZEh = Fh , h ∈ HE
1 , (20)

which holds in HA, has a unique solution Z ∈ H1. Moreover, this solution is
explicitly given by the expression

Z = (−A)−1F =

∫ ∞

0

U(t)F dt =

∫ ∞

0

T (t)FS(t) dt . (21)
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3. Additive bounded perturbations

In this section we develop a framework for perturbations of the implemented
semigroup (U(t)t≥0 ⊂ L (H) and for this we need to introduce the following
class of functions:

• For every t0 > 0 we define Bt0 to be the set of all functions (V(t))t∈[0,t0] ⊂
L (H) which satisfy the following two conditions:

(i) V(·) is strongly τ -continuous, i.e., for every Z ∈ H we have V(·)Z ∈
C([0, t0]; (H, τ)),

(ii) V(·) is bi-equicontinuous, i.e., for every ‖ · ‖-bounded sequence
(Zn)n∈N ⊂ H, which is τ -convergent to Z ∈ H, every ph ∈ P and
every ε > 0, there exists n0 ∈ N such that

sup
0≤t≤t0

ph(V(t)(Zn − Z)) < ε , n ≥ n0 .

It is clear that for every h ∈ HE and Z ∈ H we have (V(·)Z)h ∈ C([0, t0];H
A),

and it follows from the uniform boundedness principle that

sup
0≤t≤t0

‖V(t)‖L (H) < ∞ . (22)

One can prove that for every t0 > 0 the space Bt0 (with properties (i) and (ii))
endowed with the norm

‖V‖Bt0
:= sup

0≤t≤t0

‖V(t)‖L (H) , (23)

is a Banach space.
In this section we examine the perturbed operator AP = A + P , where

A is the generator of the implemented semigroup (U(t))t≥0 ⊂ L (H) and the
unknown perturbation operator P satisfies the following condition:

• P ∈ L (H) and is τ -continuous on ‖ · ‖-bounded sets.
Our goal is to find conditions under which the operator AP generates a

strongly τ -continuous semigroup on L (H) and we approach this problem by
looking for a strongly τ -continuous solution (V(t))t≥0 ⊂ L (H) of the following
integral equation

V(t)Z = U(t)Z +

∫ t

0

U(t− r)(P(V(r)Z)) dr , t ≥ 0 , (24)

where Z ∈ H and the integral is understood in (H, τ).
Let us notice that the above defined perturbation operator P really covers

the case we are interested in, i.e.,

H ∋ Z 7→ PZ = PAZ + ZPE ∈ H , (25)
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where PA ∈ L (HA) and PE ∈ L (HE). In this case

APZ = (A+ P)Z

= (A+ PA)Z + Z(E + PE) , Z ∈ D(A) , (26)

and τ -continuity of P follows from the relation

ph(PZ) ≤ ‖PA‖L (HA)ph(Z) + pg(Z) , Z ∈ H ,

where h ∈ HE and g = PEh.
In order to deal with the equation (24) it is convenient to define, for every

t0 > 0, an operator MP as follows

(MPV)(t)Z :=

∫ t

0

U(t− r)(PV(r)Z) dr , t ∈ [0, t0] , (27)

where Z ∈ H, V(·) ∈ Bt0 and the integral is in (H, τ).

Lemma 3.1 For every t0 > 0, the operator MP satisfies

MP ∈ L (Bt0) (28)

and we have the following estimate

‖(MP)n‖L (Bt0 )
≤ Cn‖P‖n

L (H)

tn0
n!

, n ∈ N , (29)

where C := sup0≤t≤t0
‖U(t)‖L (H), and

r(MP) := lim sup
n→∞

n

√

‖(MP)n‖L (Bt0)
= 0 , (30)

where r(MP ) is the spectral radius of MP ∈ L (Bt0). We also have

‖((MP)nU)(t)‖L (H) ≤ Cωe
ωtCn

ω‖P‖n
L (H)

tn

n!
, t ≥ 0 , (31)

for n ∈ N, where ω and Cω are the constants from (9).

The proof of this lemma is given in the Appendix.
The main result on bounded perturbations of the implemented semigroup

reads as follows.

Theorem 3.2 Let (U(t))t≥0 ⊂ L (H) be an implemented semigroup, A denote
its generator and P ∈ L (H) be τ-continuous on ‖ · ‖-bounded sets. There exists
a unique strongly τ-continuous family (V(t))t≥0 ⊂ L (H) satisfying the integral
equation

V(t)Z = U(t)Z +

∫ t

0

U(t− r)(P(V(r)Z)) dr , t ≥ 0 , Z ∈ H , (32)

such that:
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(i) The family (V(t))t≥0 ⊂ L (H) admits the following representation

V(t) =

∞
∑

n=0

((MP )nU)(t) =

∞
∑

n=0

Wn(t) , (33)

where t ≥ 0 and the series is convergent in the norm of L (H), uniformly
in t on every finite interval, and

W0(t) := U(t) ,

Wn+1(t) := (MPWn)(t)

=

∫ t

0

U(t− r)PWn(r) dr , t ≥ 0 , n ∈ N ,

where the integral is understood in (H, τ).
(ii) (V(t))t≥0 ⊂ L (H) is a strongly τ-continuous semigroup and its generator

(AP ,D(AP )) (defined as in Definition 1.2) is given by

AP = A+ P , D(AP ) = D(A) . (34)

(iii) The following estimate holds

‖V(t)‖L (H) ≤ Cω e (ω+Cω‖P‖L (H))t , t ≥ 0 , (35)

where Cω and ω are constants from (9).
(iv) The following holds

C(ω+Cω‖P‖L (H)) ⊂ ̺(AP ) , (36)

where

C(ω+Cω‖P‖L (H)) = {λ ∈ C : Reλ > ω + Cω‖P‖L (H)} ,

and for λ ∈ C(ω+Cω‖P‖L (H)) we have

R(λ,AP ) = R(λ,A)(I − PR(λ,A))−1

= (I −R(λ,A)P)−1R(λ,A) ,
and

‖R(λ,AP)‖L (H) ≤
Cω

Reλ− ω − Cω‖P‖L (H)
, (37)

where ω i Cω are constants from (9).

Proof 3.3 Let us rewrite the equation (32) in the simplified form as an equa-
tion in L (H)

V(t) = U(t) + (MPV)(t) , t ≥ 0 , (38)

and apply the method of successive approximation to show that it has a unique
solution. For this purpose we define a sequence of functions (Vk(t))t≥0 ⊂ L (H),



Robustness of solutions to algebraic Sylvester equation 35

where

V0(t) := U(t)

V1(t) := U(t) + (MPV0)(t) = U(t) + (MPU)(t)

...

Vk(t) := U(t) + (MPVk−1)(t) =

n=k
∑

n=0

((MP)nU)(t)

and show that there exists the limit

‖ · ‖L (H)- lim
k→∞

Vk(t) =
∞
∑

n=0

((MP)nU)(t)

= V(t) ∈ L (H) , t ≥ 0 . (39)

Using the estimate (31) we can majorize the sequence (Vk(t))k≥0 as follows

‖Vk(t)‖L (H) = ‖

n=k
∑

n=0

((MP)nU)(t)‖L (H)

≤ Cωe
ωt

n=k
∑

n=0

Cn
ω‖P‖n

L (H)

tn

n!
, t ≥ 0 ,

which implies the required (pointwise in t) convergence of (39) with

‖V(t)‖L (H) = ‖
∞
∑

n=0

((MP)nU)(t)‖L (H)

≤ Cωe
ωt

∞
∑

n=0

Cn
ω‖P‖n

L (H)

tn

n!

= Cωe
ωteCω‖P‖L (H)t , t ≥ 0 . (40)

It also follows from the properties of the operator MP that every function
(Vk(t))t≥0 ⊂ L (H) is strongly τ-continuous and bi-equicontinuous. Moreover, it
follows from the two above estimates that in fact the convergence (39) is uniform
in t on every finite interval [0, t0], i.e., for every t0 > 0 we have convergence in
the norm of Bt0 . Consequently, for every t0 > 0 the limit function (V(t))t≥0 ⊂
L (H) restricted to the interval [0, t0] satisfies V(·) ∈ Bt0 , which means that
(V(t))t≥0 ⊂ L (H) is also strongly τ-continuous and bi-equicontinuous.

In order to show that the function

V(t) =

∞
∑

n=0

((MP)nU)(t) , t ≥ 0 (41)
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(defined by (39)) satisfies the integral equation (38) let us apply MP to both
sides of (41) and then we get

(MPV)(t) = (MPU)(t) + ((MP )2U)(t) + ((MP)3U)(t) + · · ·

= −U(t) + U(t) + (MPU)(t) + ((MP )2U)(t) + · · ·

(MPV)(t) = −U(t) + V(t) , t ≥ 0 ,

as required.
Finally, to prove the uniqueness of (V(t))t≥0 let us assume that (W(t))t≥0 is

another solution of (38) and hence the difference D(t) := V(t)−W(t) satisfies
the equation D(t) = (MPD)(t) for t ≥ 0, which in fact implies that

D(t) = ((MP )nD)(t) , t ≥ 0 , n ∈ N .

Using now the estimate (29) we see that for every t0 > 0 we have

‖D‖Bt0
≤ lim sup

n→∞
‖(MP)n‖L (Bt0 )

‖D‖Bt0

≤ lim sup
n→∞

Cn‖P‖n
L (H)

tn0
n!

‖D‖Bt0
= 0 ,

i.e., D(t) = 0 for every t ≥ 0. This completes the proof of the first part of the
lemma.

(i) Since Wn(t) = (MP)nU)(t) for t ≥ 0, then this part follows immediately
from the above considerations.

(ii)+(iii)+(iv) It has been shown above that the family (V(t))t≥0 ⊂ L (H)
is strongly τ-continuous. In order to prove that it is a semigroup we use the
equation (38). The condition (30) implies that for every t0 > 0 there exists an
inverse (I − MP)−1 ∈ L (Bt0) and hence function (V(t))t≥0 ⊂ L (H) can be
expressed in the form

V(t) = ((I −MP)−1U)(t) , t ≥ 0 . (42)

Let us now consider the equation

V(t+ s) = U(t+ s) +

∫ t+s

0

U(t+ s− r)PV(r) dr , t, s ≥ 0 ,

which, after manipulations involving semigroup properties of (U(t))t≥0 ⊂ L (H)
and change of the integration variable, can be transformed to the form

V(t+ s) = U(t)V(s) +

∫ t

0

U(t− r)PV(r + s) dr , t, s ≥ 0 . (43)

Fixing s ≥ 0 and introducing Vs(t) := V(t+ s), where t ≥ 0, we rewrite (43) as
follows

Vs(t) = U(t)V(s) + (MPVs)(t) , t ≥ 0 .
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Hence, making use of (38) and (42), we obtain

Vs(t) = ((I −MP)−1U)(t)V(s) = V(t)V(s) , t ≥ 0 ,

which simply means that V(t+ s) = V(t)V(s) for t, s ≥ 0. By changing the role
of t and s in the equation (43) we get V(t + s) = V(s)V(t) for t, s ≥ 0. Since
the equality V(0) = I is obvious, the semigroup properties of (V(t))t≥0 ⊂ L (H)
are proven.

Let (AP ,D(AP )) be the generator of the semigroup (V(t))t≥0 ⊂ L (H) (de-
fined according to Definition 1.2). If we assume Z ∈ D(AP ), then we can
differentiate both sides of (32) as follows

V̇(t)Z = A−1(U−1(t)Z)+A

∫ t

0

U(t− r)(P(V(r)Z)) dr+P(V(t)Z) , t ≥ 0 ,

where the equality is understood in an extrapolated space H−1 (H1 →֒ H →֒
H−1). This space, together with the extrapolated (extended) implemented semi-
group (U−1(t))t≥0 ⊂ L (H−1) and its generator A−1 are defined, e.g., in Emir-
sajłow (2012). Hence, for t = 0, we get

APZ = A−1Z + PZ , Z ∈ D(AP) ,

which means that A−1Z ∈ H, i.e., Z ∈ D(A) and

APZ = AZ + PZ , Z ∈ D(AP ) ⊂ D(A) .

In order to show that, in fact, D(AP ) = D(A), let us assume λ ∈ ̺(A) and
consider the relation

λI −AP = λI −A− P = (I − PR(λ,A))(λI −A)

= (λI −A)(I −R(λ,A)P).

Using (10) we see that for λ ∈ C such that Reλ > ω + Cω‖P‖L (H), we have

‖PR(λ,A)‖L (H) = ‖R(λ,A)P‖L (H) ≤ ‖P‖L (H)
Cω

Reλ− ω
< 1 , (44)

which implies that there exist inverses (I − PR(λ,A))−1, (I −R(λ,A)P)−1 ∈
L (H) and

R(λ,AP ) = R(λ,A)(I − PR(λ,A))−1 (45)

= (I −R(λ,A)P)−1R(λ,A) , (46)

i.e., C(ω+Cω‖P‖L (H)) ⊂ ̺(AP ). In particular, since (I−PR(λ,A))−1 ∈ L (H) is

a bijection, then (45) implies that R(R(λ,AP )) = R(R(λ,A)), i.e., D(AP ) =
D(A).

Moreover, combining (45) (or (46)) with (44) we also obtain

‖R(λ,AP)‖L (H) ≤
Cω

Reλ− ω − Cω‖P‖L (H)
. (47)

The estimate (35) has been already derived as relation (40).
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In the important case when the implemented semigroup (U(t))t≥0 ⊂ L (H) is
exponentially stable, we immediately obtain the following result:

Corollary 3.4 If the implemented semigroup (U(t))t≥0 ⊂ L (H) is exponen-
tially stable, i.e. ω0(U) < 0, and the constant ω satisfies 0 > ω > ω0(U), then
for arbitrary perturbation P ∈ L (H) such that

‖P‖L (H) <
|ω|

Cω

, (48)

the perturbed semigroup (V(t))t≥0 ⊂ L (H) is also exponentially stable (and
satisfies (35)).

4. Perturbed algebraic Sylvester equation

In this section we will specify the obtained results to the perturbed algebraic
Sylvester equation. Using the notation HE := L (HE) and HA := L (HA),
we assume throughout the section that the strongly continuous semigroups
(T (t))t≥0 ⊂ HA and (S(t))t≥0 ⊂ HE satisfy

ω0(T ) + ω0(S) < 0 . (49)

It follows that for all ω1, ω2 and C1, C2 such that 0 > ω1 +ω2 > ω0(T )+ω0(S)
and

‖T (t)‖HA ≤ C1e
ω1t , ‖S(t)‖HE ≤ C2e

ω2t , t ≥ 0 ,

we have

‖U(t)‖L (H) ≤ C1C2e
(ω1+ω2)t , t ≥ 0 .

Since the implemented semigroup is exponentially stable, then by Corollary 2.3
the algebraic Sylvester equation

AZh+ ZEh = Fh , h ∈ HE
1 , (50)

where the equality is in HA, has for every operator F ∈ H a unique solution
Z ∈ H1 ⊂ H.

Let us now consider the perturbed algebraic Sylvester equation

APZPh+ ZPEPh = Fh , h ∈ HE
1 , (51)

where the equality is in HA, and the perturbed operators AP and EP are given
by

AP = A+ PA , EP = E + PE , (52)

where PA ∈ HA and PE ∈ HE are unknown bounded perturbations. For this
equation we have the following result:
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Lemma 4.1 If the perturbations PA ∈ HA and PE ∈ HE satisfy the bound

‖PA‖HA + ‖PE‖HE <
|ω1 + ω2|

C1C2
, (53)

then for every F ∈ H the perturbed algebraic Sylvester equation (51) admits a
unique solution ZP ∈ H1 ⊂ H such that

‖Z − ZP‖1 ≤
C1C2(‖P

A‖HA + ‖PE‖HE )‖F‖

|ω1 + ω2| − C1C2(‖P
A‖HA + ‖PE‖HE )

, (54)

where ‖ · ‖1 = ‖ − A( · )‖, and Z is a solution of the unperturbed Sylvester
equation (50).

Proof 4.2 Using the notation

APZ = AZ + PZ = AZ + ZE + PAZ + ZPE , Z ∈ H1 ,

the equations (50) and (51) can be rewritten as

−AZ = −F and −APZP = −F .

If we transform the second equation to the form −AZP = PZP−F and subtract
from the first one, we get

−A(Z − ZP) = −PZP . (55)

For the equation (55) to make sense we have to show that the equation −APZP =
−F has a unique solution. For the start let us notice that we have

ω = ω1 + ω2 , Cω = C1C2 (56)

and

‖P‖L (H) ≤ ‖PA‖HA + ‖PE‖HE . (57)

Corollary 3.4 implies that for perturbations such that (see (53))

0 > ω1 + ω2 + C1C2(‖P
A‖HA + ‖PE‖HE ) , (58)

the perturbed semigroup (V(t))t≥0) ⊂ L (H), with generator (AP ,D(AP ) =
D(A)), is exponentially stable and by Corollary 2.3, the equation −APZP = −F

has a unique solution. Moreover, 0 ⊂ ̺(AP) and this solution can be expressed
in the form

ZP = −R(0,AP)F .

Substituting this expression into (55) we get

−A(Z − ZP) = P(R(0,AP )F ) , (59)
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and hence

‖−A(Z −ZP)‖ = ‖P(R(0,AP)F )‖ ≤ ‖P‖L (H)‖R(0,AP)‖L (H)‖F‖. (60)

Taking into account relations (56)-(58) the condition (47) implies the inequality

‖R(0,AP)‖L (H) ≤
C1C2

−ω1 − ω2 − C1C2(‖PA‖HA + ‖PE‖HE)
,

which, applied to (60), leads to the estimation (54).

In some applications the following corollary to Lemma 4.1 may be useful.

Corollary 4.3 Let the solution Z ∈ H = L (HE , HA) of the Sylvester equa-
tion (50) have an inverse Z−1 ∈ L (HA, HE) and C > 0 be a constant from the
inequality

‖X‖ ≤ C‖X‖1 , X ∈ H1 .

If the perturbations PA ∈ HA and PE ∈ HE satisfy the bound

‖PA‖HA + ‖PE‖HE <
|ω1 + ω2|

C1C2
, (61)

and, additionally, the following bound holds

CC1C2(‖P
A‖HA + ‖PE‖HE )‖F‖

|ω1 + ω2| − C1C2(‖P
A‖HA + ‖PE‖HE)

<
1

‖Z−1‖L (HA,HE)

, (62)

then the solution ZP ∈ H of the perturbed Sylvester equation (51) has an inverse
(ZP)−1 ∈ L (HA, HE).

Proof 4.4 It follows from Lemma 4.1, if we use the well-known fact from
functional analysis, that if Z ∈ L (HE , HA) has a bounded inverse Z−1 ∈
L (HA, HE) and

‖Z − ZP‖L (HE ,HA) <
1

‖Z−1‖L (HA,HE)

, (63)

then there also exists an inverse (ZP)−1 ∈ L (HA, HE).

We illustrate applicability of the general results with the following example.

Example 4.5 Let us assume that HA, A and (T (t))t≥0 are the same as in
Section 1. In the obvious way we also define the unbounded adjoint operator
A∗ on HA and the adjoint semigroup (T ∗(t))t≥0 ⊂ L (HA). Moreover, let U

be another Hilbert space - the control space and B ∈ L (U,HA) - the control
operator.

Under these assumptions we consider the following control system

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 ∈ HA , (64)

where (x(t))t≥0 ⊂ HA is the state and u ∈ L2
loc(0,∞;U) is the control. For the

system (64) we assume that it enjoys the following two properties:
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(i) the semigroup (T (t))t≥0 ⊂ L (HA) is exponentially stable, i.e. ω0(T ) < 0,
(ii) the system (64) is exactly infinite-time controllable, i.e. there exists γ > 0

such that

〈Mh, h〉A := 〈

∫ ∞

0

T (t)BB∗T ∗(t)dt h, h〉A ≥ γ(‖h‖A)2 , h ∈ HA , (65)

where the operator M ∈ L (HA) is the controllability gramian of the
system.

It is rather clear that condition (ii) is equivalent to bounded invertibility of the
selfadjoint and non-negative operator M ∈ L (HA), i.e.,

M−1 ∈ L (HA) . (66)

It follows from Corollary 2.3, see also Emirsajłow and Townley (2005), that if
we define an implemented semigroup (U)(t))t≥0 ⊂ L (L (HA)) and its generator
A as follows

U(t)Z = T (t)ZT ∗(t) , Z ∈ L (HA) , t ≥ 0 , (67)

(AZ)h = AZh+ ZA∗h , Z ∈ L (HA) ∩H1 , h ∈ HA∗

1 , (68)

then under the assumption (i) the controllability gramian M ∈ L (HA)∩H1 can
be regarded as a unique solution of the following algebraic Sylvester equation

−AMh−MA∗h = BB∗h , h ∈ HA∗

1 = D(A∗) , (69)

where the equality holds in HA, BB∗ ∈ L (HA) and an explicit description of
H1 is given as property (b) in Section 1. The above special case of the Sylvester
equation, where E = A∗ and F = BB∗ is a selfadjoint and non-negative operator
in L (HA), is called the algebraic Lyapunov equation.

Let us now assume that the system operator A is additively perturbed by
an unknown bounded perturbation PA ∈ L (HA), so that the perturbed system
becomes

ẋ(t) = APx(t) +Bu(t) , x(0) = x0 ∈ HA , (70)

where

AP := A+ PA . (71)

For the perturbed system we would like to answer the following robustness
question: what perturbations PA ∈ L (HA) are allowed so that the perturbed
system (70) preserves properties (i) and (ii), i.e., exponential stability and exact
infinite-time controllability?

In order to answer this question we use the perturbed implemented semigroup
(UP )(t))t≥0 ⊂ L (L (HA)) and its generator AP , i.e.,

UP(t)Z = TPA

(t)Z(TPA

)∗(t) , Z ∈ L (HA) , t ≥ 0 , (72)

(APZ)h = (A+ PA)Zh+ Z(A+ PA)∗h , Z ∈ L (HA) ∩H1 , h ∈ HA∗

1 .(73)
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Since we have

ω0(U
P) = ω0(T

PA

) + ω0((T
PA

)∗) = 2ω0(T
PA

) , (74)

then the exponential stability of the perturbed semigroup (TPA

(t))t≥0 ∈ L (HA)
is equivalent to the exponential stability of the perturbed implemented semigroup
(UP )(t))t≥0 ⊂ L (L (HA)). Using now Corollary 3.4 we obtain the following
sufficient condition for exponential stability

‖PA‖L (HA) ≤
|ω|

C2
ω

, (75)

where ω satisfies ω0(T ) < ω < 0 and Cω is such that

‖T (t)‖L (HA) ≤ Cωe
ωt , t ≥ 0 . (76)

Under the exponential stability condition the controllability gramian MP of the
perturbed system (70) is well defined by the relation

MP :=

∫ ∞

0

TPA

(t)BB∗(TPA

)∗(t)dt ∈ L (HA) , (77)

and by Corollary 2.3 we know that MP ∈ L (HA) ∩ H1 and uniquely satisfies
the perturbed algebraic Sylvester equation

−(A+ PA)MPh−MP(A+ PA)∗h = BB∗h , h ∈ HA∗

1 . (78)

It now follows from Corollary 4.3 that the additional estimate

CC2
ω‖P

A‖L (HA)‖BB∗‖L (HA)

|ω| − C2
ω‖P

A‖L (HA)

<
1

‖M−1‖L (HA)

, (79)

provides a sufficient condition for the existence of the inverse operator (MP)−1 ∈
L (HA), which is equivalent to the exact infinite-time controllability of the per-
turbed system.

5. Final remarks

In this paper we have proved that if the infinite-dimensional algebraic Sylvester
equation (50) has a unique solution Z ∈ H1, then this property is preserved
under arbitrary bounded perturbations (52) as long as they remain small and
the inequality (53) provides the upper bound for their norms. In this case the
difference of these two solutions satisfies the estimate (54). A simple example
of application of the results to the robustness of the exponential stability and
the exact infinite-time controllability of an infinite-dimensional control system
under bounded perturbations is given.

It seems that similar approach can be developed also for unbounded per-
turbations which are of great interest in output regulation as well as observer
design problem for distributed parameter systems.
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A. Appendix: Proof of Lemma 3.1

Proof A.1 It is clear that for every t0 > 0 and Z ∈ H we have (MPV)(·)Z ∈
C([0, t0]; (H, τ)). Moreover,

‖(MPV)(t)Z‖ ≤

∫ t

0

‖U(t− r)‖L (H)‖P‖L (H)‖‖V(r)Z‖ dr

≤ t C ‖P‖L (H) sup
0≤r≤t

‖V(r)‖L (H)‖Z‖ ,

where t ∈ [0, t0], and hence

‖(MPV)(t)‖L (H) ≤ t C ‖P‖L (H)‖V‖Bt0
, t ∈ [0, t0], (80)

which implies ‖MP‖Bt0
< ∞. In order to complete the proof of (28) we have

to show that for every V ∈ Bt0 the family (MPV)(t))t∈[0,t0] ⊂ L (H) is bi-
equicontinuous, i.e., for every ‖ · ‖-bounded sequence (Zn)n∈N ⊂ H which is
τ-convergent to Z ∈ H, every ph ∈ P, every and ε > 0, there exists n0 ∈ N such
that

sup
0≤t≤t0

ph((M
PV)(t)(Zn − Z)) < ε , n ≥ n0 . (81)

Since we have

sup
0≤t≤t0

ph((M
PV)(t)(Zn − Z)) ≤ sup

0≤t≤t0

∫ t

0

ph(U(t− r)(PV(r)(Zn − Z))) dr

≤ t0 sup
0≤t≤t0

ph(U(t)(PV(t)(Zn − Z))) ,
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then (81) will follow from sequential τ-continuity of the family (U(t)PV(t))t∈[0,t0]

⊂ L (H). We prove this continuity by contradiction. For this purpose we assume
that there exists a ‖ · ‖-bounded sequence (Zn)n∈N ⊂ H, which is τ-convergent
to some Z ∈ H, a seminorm ph ∈ P and ε > 0 such that for every n ∈ N we
can find tn ∈ [0, t0] such that

ph(U(tn)(PV(tn)(Zn − Z))) > ε . (82)

However, by (22) and assumptions on P, the sequence (PV(tn)(Zn−Z))n∈N ⊂ H
is ‖ · ‖-bounded and by sequential τ-continuity of (V(t))t∈[0,t0] we have

lim
n→∞

ph(PV(tn)(Zn − Z)) = 0 .

Thus, the bi-equicontinuity of the family (U(t))t≥0 ⊂ L (H) implies

lim
n→∞

ph(U(tn)(PV(tn)(Zn − Z))) = 0 ,

which contradicts (82) and completes the proof of (28).
Next we prove the relation (29) and for this purpose we use the following

estimate

‖((MP)nV)(t)‖L (H) ≤ Cn‖P‖n
L (H)

tn

n!
‖V‖Bt0

, t ∈ [0, t0], (83)

which holds for every V ∈ Bt0 and n ∈ N. In order to show (83) we use
mathematical induction. For n = 1 this estimate is just (80). If we now assume
that it holds for some n ∈ N, then we obtain

‖((MP)n+1V)(t)‖L (H) = ‖

∫ t

0

U(t− r)P((MP )nV)(r) dr‖L (H)

≤

∫ t

0

‖U(t− r)‖L (H)‖P‖L (H)‖((M
P)nV)(r)‖L (H) dr

≤

∫ t

0

C‖P‖L (H)C
n‖P‖n

L (H)

rn

n!
‖V‖Bt0

dr

= Cn+1‖P‖n+1
L (H)

tn+1

(n+ 1)!
‖V‖Bt0

,

i.e., it also holds for n + 1 and hence for every n ∈ N. It is obvious that (83)
implies (29). In turn, relation (30) follows easily from the estimate (29).

It now remains to show (31). For n = 1 we have

‖(MPU)(t)‖L (H) = ‖

∫ t

0

U(t− r)PU(r) dr‖L (H)

≤

∫ t

0

‖U(t− r)‖L (H)‖P‖L (H)‖U(r)‖L (H) dr

≤

∫ t

0

Cωe
ω(t−r)‖P‖L (H)Cωe

ωr dr

= Cωe
ωtCω‖P‖L (H) t , t ≥ 0 .
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If we now assume that (31) holds for some n ∈ N, then

‖((MP)n+1U)(t)‖L (H) = ‖

∫ t

0

U(t− r)P((MP )nU)(r) dr‖L (H)

≤

∫ t

0

‖U(t− r)‖L (H)‖P‖L (H)‖((M
P)nU)(r)‖L (H) dr

≤

∫ t

0

Cωe
ω(t−r)‖P‖L (H)Cωe

ωrCn
ω‖P‖n

L (H)

rn

n!
dr

= Cωe
ωtCn+1

ω ‖P‖n+1
L (H)

tn+1

(n+ 1)!
,

i.e., it also holds for n+ 1 and hence for every n ∈ N.


