PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modeling of Wall Pressure in Silo with and Without Insert

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a methodology based on the finite element method to simulate the flow of granular materials. Moreover, it allows proper estimation of dynamic pressure during silo discharge since this subject is still under discussion, especially for designing silos with an insert (an input element). A 2-D simulation of the discharge process of a cylindrical silo with cone and a central discharging orifice was performed. Two cases were studied, with and without using insert in silo. Numerical analysis was carried out with the help of the uncoupled arbitrary Lagrangian–Eulerian (ALE) approach. The resulting dynamic pressure distribution on the silo wall for each of the two cases was inferred numerically. The resulting values of pressure were compared with the results of the experimental study on a cylindrical metal silo to demonstrate the accuracy of the numerical model in determining the dynamic wall pressure, especially in the case of using an insert in silo during discharge.
Słowa kluczowe
Wydawca
Rocznik
Strony
22--33
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Faculty of Civil Engineering, International University for Science and Technology, Damascus, Syria
  • Faculty of Engineering, Middle East University, Amman, Jordan
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
  • [1] Rotter, J.M. 2001, “Guide for The Economic Design Of Circular Metal Silos“, Spon Press, London.
  • [2] Schulze, D., 2008. Powders and Bulk Solids – Behavior,Characterization Storage and Flow. Springer,Berlin.
  • [3] Strusch, J. and Schwedes,J. 1998.” Wall stress distributions in silos with inserts, and loads on inserts “, in: Brown, C.J., Nielsen, J. editors, “Silo Fundamentals of theory, behaviour and design”, E & FN Spon, pp.118-130. London.
  • [4] Wójcik, M., Härtl, J., Ooi, J.Y., Rotter, J.M., Ding, S., Enstad, G. 2007.”Experimental Investigation of the Flow Pattern and Wall Pressure Distribution in a Silo with a Double- ConeInsert.”Journalof.Part.Syst.Charact.24, 2007, pp.296-303.
  • [5] Härtl, J., Ooi, J.Y., Rotter, J.M., Wojcik, M., Ding, S., Enstad, G.G. 2007. “The influence of a cone-in- cone insert on flow pattern and wall pressure in a full-scale silo”, Journal of chemical engineering research and design 86 ,2008, pp. 370-378.
  • [6] Askifi, F, Hammadeh, H. 2013. “Study the effect of using proposed inserts in silo on flow pattern and wall pressure. “ Damascus University, Syria, Vol 29-2, 2013
  • [7] Härtl, J., 2008. A Study of Granular Solids in Silos with and without an Insert.The University of Edinburgh (PhDThesis).
  • [8] Wojcik, M., Tejchman, J. 2008. “Application of an Uncoupled ALE-formulation to Confined Granular Flow in Silos.”, The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 1-6 October, 2008, Goa, India .
  • [9] Wang, Y., Lu, Y., Ooi, J.Y. 2013. “Numerical modelling of dynamic pressure and flow in hopper discharge using the Arbitrary Lagrangian–Eulerian formulation.” Journal of Engineering Structures 56, pp. 1308–1320.
  • [10] Artoni, R., Santomaso, A., Canu, P. 2009. “ Simulation of dense granular flows: Dynamics of wall stress in silos.” Journal of chemical engineering Science 64 ,2009,pp 4040–4050.
  • [11] Artoni, R., Zugliano, A., Primavera, A., Canu, P., Santomaso, A. 2011. “Simulation of dense granular flows: Comparison with experiments.” Journal of Chemical Engineering Science 66, 2011, pp. 548–557.
  • [12] Silvia Volpato, S., Artoni, R., Santomaso, A. 2013. “Numerical study on the behavior of funnel flow silos with and without inserts through a continuum hydrodynamic approach.”Journal of chemical engineering research and design, 2013.
  • [13] Rombach,G.A., Neumann,F.”3-D Finite Element Modelling of Granular Flow in Silos”, The 17th ASCE Engineering Mechanics Conference, June 13-16, 2004, University of Delaware, Newark, DE.
  • [14] ABAQUS version 6.12-1. Dassault Systemes Simulia Corp., USA.
  • [15] Wojcik, M., Tejchman, J. 2007. “Numerical Simulations of Granular Material Flow In Silos with and without Insert. “, Archives of Civil Engineering. LIII.2.2007, pp. 293–322.
  • [16] Chen, J.F., Ooi, J.Y., Rotter, J.M., Batikha, M., Zhong, Z., Andreasson, B., Forsmo, S.E.,Tano, K., Horrigmoe, G. 2007. “Finite element analysis of solid stresses in a silo with an inner tube “, University of Edinburgh.
  • [17] Wojcik, M., Tejchman, J., Enstad, G.G. 2012. “ Confined granular flow in silos with inserts — Full-scale experiments. “, Journal of Powder Technology 222 ,2012, pp. 15–36
  • [18] Yang, Y., Ooi, J., Rotter, M., Wang, Y. 2011. “Numerical analysis of silo behavior using non-coaxial models.” Journal of chemical engineering Science 66 , 2011,pp 1715–1727.
  • [19] Johanson, J.R., Kleysteuber, K. 1996. “ Flow corrective inserts in bin. “ Chemical engineerin gprogress 62, 11, pp. 79-83
  • [20] Tuzun, U., Neddermaan, R,M,.1983. “Flow of granular materials round obstacles.” Bulk solids handling, 3. pp 503-517.
  • [21] Karlsson, S., Klisinski, M., Runesson, K., 1998. “Finite element simulations of granular flow in plane silos with complicated geometry.” Powder Technology, 99, pp 29-39.
  • [22] Wieckowski, Z., 2002. “The dynamic analysis of large strain problems by the material point.” Proc. Of the fifth World Congress Computational Mechanics(WCCM-V),Vienna,Austria.
  • [23] Rombach G, Eibl J., 1998.” A dynamic finite element model for silo pressure and solids flow. “. In: Brown CJ, Nielsen J, editors. Silos, “fundamentals of theory behaviour and design.” E&FN SPON; pp. 481–94.
  • [24] Martinez MA, Alfaro I, Doblare M., 2002. “Simulation of axisymmetric discharging in metallic silos: analysis of the induced pressure distribution and comparison with different standards.” Eng Struct 24: pp. 1561–1574.
  • [25] Vidal P, Guaita M, Ayuga F., 2005. “Analysis of dynamic discharge pressures in cylindrical slender silos with a flat bottom or with a hopper: comparison with Eurocode 1.” Biosyst Eng; 91(3). pp. 335–348.
  • [26] Hammadeh H, Askifi F., Ubysz A., Maj M., Zeno A., 2019.”Effect of using insert on the flow pressure in cylindrical silo.” Studia Geotechnica et Mechanica; 41 (4), pp.177-183.
  • [27] Donea J, Huerta A.,2003. “Finite Element Methods for Flow Problems.” John Wiley & Sons Ltd, The Atrium , Southern Gate., England.
  • [28] Y. Wang, Y. Lu, J.Y. Ooi, 2015. “A numerical study of wall pressure and granular flow in a flat-bottomed silo”, Powder Technol. 282, pp. 43–54
  • [29] R.J. Goodey, Brown, C.J., Rotter, J.M. 2017. “ Rectangular steel silos: Finite element predictions of filling wall pressures”. Engineering Structures, 132, pp. 61-69.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba3025ef-35dd-4db3-8ea0-5b1ebd56aa7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.