Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wpływ procedury odlewania na zużycie kompozytów magnezowych zbrojonych pianą węglową
Języki publikacji
Abstrakty
In this article the characteristics of the macrostructure, microstructure (LM, SEM) and selected properties of magnesium matrix composites reinforced with carbon open-celled foam with a porosity of 10 ppi, obtained by two casting techniques - gravity casting and pressure infiltration, were presented. The open porosity and hardness of the composites were determined. Tribological examinations in dry friction conditions were performed by the pin-on-disc method, and the coefficient of friction, weight loss of the sample as well as the cast iron countersample were determined, and the wear trace was characterized. Observations of the examined material surfaces after friction tests were conducted by SEM. In comparison to the gravity cast composite, a lower porosity, higher hardness and finer magnesium matrix size were found for the pressure infiltrated composite. The impact of the casting technique also concerned the tribological properties. Both the composites exhibited a lower coefficient of friction in comparison to pure magnesium, but for the pressure infiltrated composite the coefficient of friction, weight loss of the sample and countersample, as well as the depth of the wear trace were the lowest. Moreover, after the friction tests, different effects were observed on the surfaces. In the gravity cast composite the carbon component cracked and separated from the matrix, in contrast to the pressure infiltrated composite where uniform wear was observed while maintaining continuous bonding with the matrix, which explains the differences in the tribological properties.
Scharakteryzowano makrostrukturę, mikrostrukturę (LM, SEM) i wybrane właściwości kompozytu na osnowie technicznie czystego magnezu zbrojonego otwartokomórkową pianą węglową o porowatości 10 ppi, otrzymanego dwiema metodami - odlewania grawitacyjnego oraz infiltracji ciśnieniowej. Określono porowatość i twardość kompozytów. Przeprowadzono badania tribologiczne w warunkach tarcia na sucho metodą pin-on-disc i wyznaczono współczynnik tarcia, ubytek masy próbki i przeciwpróbki żeliwnej oraz scharakteryzowano ślad wytarcia. Powierzchnie kompozytów po badaniach tribologicznych scharakteryzowano metodą SEM. Wykazano mniejszą porowatość, większą twardość i mniejsze ziarna osnowy magnezowej kompozytu otrzymanego metodą infiltracji ciśnieniowej w porównaniu z odlewnym grawitacyjnie. Wpływ techniki odlewania dotyczył również właściwości tribologicznych. Obydwa kompozyty charakteryzował mniejszy współczynnik tarcia w porównaniu z próbką referencyjną z materiału osnowy, ale dla kompozytu otrzymanego metodą infiltracji ciśnieniowej ten współczynnik, ubytki masy i głębokość śladu wytarcia były najmniejsze. Ponadto obserwowano różnice na powierzchni wytarcia, komponent węglowy ulegał wykruszeniu w przypadku materiału otrzymanego metodą odlewnia grawitacyjnego, a w infiltrowanym ciśnieniowo następowało jego równomierne zużycie przy zachowaniu ciągłego połączenia z osnową, co tłumaczy różne parametry tribologiczne.
Czasopismo
Rocznik
Tom
Strony
64--70
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Silesian University of Technology, Faculty of Materials Science and Metallurgy, Institute of Materials Engineering, ul. Krasińskiego 8, 40-019 Katowice, Poland
autor
- Silesian University of Technology, Faculty of Materials Science and Metallurgy, Institute of Materials Engineering, ul. Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- [1] Ataya S., Alsaleh N.A., El-Sayed Seleman M.M. Strength and wear behavior of Mg alloy AE42 reinforced with carbon short fibers, Acta Metallurgica Sinica - English Letters, 2018, DOI: 10.1007/s40195-018-0771-z
- [2] Olszówka-Myalska A., Myalski J., Magnesium alloy AZ31 - Short carbon fiber composite obtained by pressure die casting, Solid State Phenomena 2015, 229, 115-122.
- [3] Olszówka-Myalska A., Myalski J., Hekner B., Tribological characteristics of the magnesium matrix-glassy carbon particles composite manufactured by different casting methods, Conference proceedings of European Symposium on Friction, Wear, and Wear Protection, 6 to 8 May 2014, Karlsruhe, Germany, 2015, 1-9, DOI: 10.1155/2015/ 919308.
- [4] Olszówka-Myalska A., Myalski J., Botor-Probierz A., Effect of glassy carbon particles on wear resistance of AZ91E matrix composite, Solid State Phenomena 2011, 176, 127-138.
- [5] Olszówka-Myalska A., Myalski J., Chrapoński J., Influence of casting procedure on microstructure and properties of Mg alloy-glassy carbon particle composite, International Journal of Materials Research 2015, 106, 741-749.
- [6] Oddone V., Boerner B., Reich S., Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity, Science and Technology of Advanced Materials 2017, 18, 1, 180-186.
- [7] Olszówka-Myalska A., Myalski J., Godzierz M., Wrześniowski P., Magnesium matrix composite with open-celled carbon foams obtained by powder metallurgy, Archives of Metallurgy and Materials 2018, 63, 825-831.
- [8] Godzierz M., Olszówka-Myalska A., Microstructural corrosion effects on carbon foam-AZ31 magnesium matrix composite surface, Composites Theory and Practice 2018, 18(3), 133-139.
- [9] Olszówka-Myalska A., Godzierz M., Myalski J., Wrześniowski P., Magnesium matrix composite with open-celled glassy carbon foam obtained using the infiltration method, Metals 2019, 9, 622, DOI: 10.3390/met9060622.
- [10] Gallego N.C., Klett J.W., Carbon foams for thermal management, Carbon 2003, 41, 1461-1466.
- [11] Inagaki M., Qiu J., Guo Q., Carbon foam: Preparation and application. Carbon 2015, 87, 128-152.
- [12] Yu L., Feng Z., Fan Z., Kong Q., Xu L., The preparation and properties of novel structural carbon foams derived from different mesophase pitche, 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry, Kona, Hawaii, USA, June 22th-27th (2014).
- [13] Gancarczyk A., Macek W., Kołodziej A., Heat transfer phenomena of glassy carbon foams, Chemical Engineering Research and Design 2019, 143, 1-3.
- [14] Rogulski Z., Lewdorowicz W., Tokarz W., Czerwiński A., Applications of Reticulated Vitreous Carbon (RVC) in the electrochemical power sources, Polish Journal of Chemistry 2004, 78, 1357-1370
- [15] Pec M.K., Reyes R., Sanchez E., Carballar D., Delgado A., Santamaria J., Arruebo M., Evora C., Reticulated vitreous carbon: a useful material for cell adhesion and tissue invasion, European Cells and Materials 2010, 20, 282-294.
- [16] Czarnecki J.S., Blackmore M., Jolivet S., Lafdi K., Tsonis P.A., Bone growth on reticulated vitreous carbon foam scaffolds and implementation of cellular automata modeling as a predictive tool, Carbon 2014, 79, 135-148.
- [17] Posmyk A., Myalski J., Composites including foam inserts designed for combustion engine cylinder liners, Composites Theory and Practice 2017, 17, 1, 25-29.
- [18] Myalski J., Hekner B., Posmyk A., Wpływ węglowej struktury szkieletowej na właściwości tribologiczne kompozytów z osnową aluminiową, Tribologia 2015, 2015, 5, 89-98.
- [19] Steinacher M., Žužek B., Jenko D., Mrvar P., Zupanič F., Manufacturing and properties of a magnesium interpenetrating phase composite, Strojniški vestnik - Journal of Mechanical Engineering 2016, 62, 79-85.
- [20] Potoczek M., Śliwa R.E., Microstructure and physical properties of AlMg/Al2O3 interpenetrating composites fabricated by metal infiltration into ceramic foams, Archives of Metallurgy and Materials 2011, 56, 1265-1269.
- [21] Dolata A.J., Centrifugal infiltration of porous ceramic preforms by the liquid Al alloy - theoretical background and experimental verification, Archives of Metallurgy and Materials 2016, 61, 411-418
- [22] Kremzer M., Dziekońska M., Sroka M., Tomiczek B., Abrasive wear of AlSi12-Al2O3 composite materials manufactured by pressure infiltration, Archives of Metallurgy and Materials 2016, 61, 1255-1260.
- [23] San Marchi C., Kouzeli M., Rao R., Lewis J.A., Dunand D.C., Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture. Scripta Materialia 2003, 49, 861-866.
- [24] Young M.L., Rao R., Almer J.D., Haeffner D.R., Lewis J.A., Dunand D.C., Load partitioning in Al2O3-Al composites with three-dimensional periodic architecture, Acta Materialia 2009, 57, 2362-2375.
- [25] Gil R., Jinnapat A., Kennedy A.R., Pressure-assisted infiltration of molten aluminium into open cell ceramic foams:Experimental observations and infiltration modelling, Composites Part A: Applied Science and Manufacturing 2012, 43, 880-884.
- [26] Liu Q., Ye F., Gao Y., Liu S., Yang X., Zhou Z., Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties, Journal of Alloys and Compounds 2014, 585, 146- 153.
- [27] Posmyk A., Myalski J. Hekner B., Glassy carbon coating deposited on hybrid structure of composite materials, Archives of Metallurgy and Materials 2016, 61, 2B, 1045-1050.
- [28] Myalski J., Hekner B., Aluminium matrix composites reinforced by ceramic foams, Inżynieria Materiałowa/Materials Engineering 2015, 36, 5, 220-224.
- [29] Feldhoff A., Pippel E., Woltersdorf J., Carbon-fibre reinforced magnesium alloys: nanostructure and chemistry of interlayers and their effect on mechanical properties, Journal of Microscopy 1999, 196, 185-193.
- [30] Myalski J., Hekner B., Glassy carbon foams as skeleton reinforcement in polymer composite, Composites Theory and Practice 2017, 17:1, 41-46.
- [31] Polish patent application P.422243, A. Olszówka-Myalska, J. Myalski, M. Godzierz, B. Hekner.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba2e4b85-1198-4f8c-a005-49cb611bfa48