PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical Footprint of the Wet Processing of Cotton Fabric

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ślad chemiczny mokrej obróbki tkanin bawełnianych
Języki publikacji
EN
Abstrakty
EN
The chemical footprint (ChF) can identify the harmful effects of discharged chemical pollutants, helping producers to select environmentally friendly chemicals to reduce their negative environmental impact. This paper quantified and evaluated the ChF of the wet processing of cotton fabric with data collected from a dyeing enterprise. The results showed that the discharged sodium hydroxide caused the most severe impact in terms of both human toxicity and ecotoxicity due to the extensive usage and its high toxicity. The discharged sodium carbonate and dimethyl silicone oil also had a greater environmental impact. Comprehensive evaluation of human toxicity and ecotoxicity with a multi-objective grey target decision-making model indicated that the pretreatment process had the most significant impact, followed by the finishing process and dyeing process. More attention should be paid to the pretreatment process, such as the selection of environmentally friendly textile chemicals, in order to reduce the native impacts of the wet processing of cotton fabric.
PL
Ślad chemiczny (ChF) może identyfikować szkodliwe skutki emitowanych zanieczyszczeń chemicznych, pomagając producentom wybrać przyjazne dla środowiska środki chemiczne w celu zmniejszenia ich negatywnego wpływu na środowisko. W artykule określono ilościowo i oceniono ChF mokrej obróbki tkaniny bawełnianej na podstawie danych zebranych z przedsiębiorstwa farbiarskiego. Wyniki pokazały, że odprowadzany wodorotlenek sodu miał najpoważniejszy wpływ zarówno pod względem toksyczności dla człowieka, jak i ekotoksyczności, ze względu na szerokie zastosowanie i wysoką toksyczność. Odprowadzany węglan sodu i dimetylosilikonowy olej również miały duży wpływ na środowisko. Kompleksowa ocena toksyczności dla ludzi i ekotoksyczności z zastosowaniem wielocelowego modelu podejmowania decyzji wykazała, że największy wpływ miał proces obróbki wstępnej, a następnie proces wykańczania i proces barwienia. Wskazane jest zwrócenie większej uwagi na proces obróbki wstępnej, w szczególności na wybór przyjaznych dla środowiska chemikaliów tekstylnych.
Rocznik
Strony
100--104
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Zhejiang Sci-Tech University, School of Fashion Design & Engineering, Hangzhou, Zhejiang, 310018, China
autor
  • Zhejiang Sci-Tech University, School of Fashion Design & Engineering, Hangzhou, Zhejiang, 310018, China
autor
  • Zhejiang Sci-Tech University, School of Fashion Design & Engineering, Hangzhou, Zhejiang, 310018, China
autor
  • Zhejiang Sci-Tech University, School of Fashion Design & Engineering, Hangzhou, Zhejiang, 310018, China
autor
  • Ningbo University, Faculty of Tourism and Culture, Fashion Department of International United Faculty between Ningbo University and University of Angers, Ningbo 315201, China
  • Ningbo University, Collaborative Innovation Center of Port Economy, East China Sea Institute, Ningbo 315211, China
autor
  • Zhejiang Sci-Tech University, School of Fashion Design & Engineering, Hangzhou, Zhejiang, 310018, China
  • Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, 310018, China
Bibliografia
  • 1. Gokce Y, Aktas Z, Capar G, et al. Improved Antibacterial Property of Cotton Fabrics Coated with Waste Sericin/Silver Nanocomposite. Materials Chemistry and Physics 2020; 254: 123508.
  • 2. Baydar G, Ciliz N, Mammadov A. Life Cycle Assessment of Cotton Textile Products in Turkey. Resources Conservation & Recycling 2015: 104: 213-223.
  • 3. Harane RS, Adivarekar RV. Sustainable Processes For Pre-Treatment Of Cotton Fabric. Textiles and Clothing Sustainability 2017; 2(1): 1-9.
  • 4. Kan CW, Lam CF, Chan CK et al. Using Atmospheric Pressure Plasma Treatment for Treating Grey Cotton Fabric. Carbohydr Polym 2014; 102(1): 167-173.
  • 5. Dong X, Gu Z, Hang C, et al. Study on the Salt-Free Low-Alkaline Reactive Cotton Dyeing in High Concentration of Ethanol in Volume. Journal of Cleaner Production 2019; 226: 316-323.
  • 6. Ayele M, Tesfaye T, Alemu D, et al. Natural Dyeing of Cotton Fabric with Extracts from Mango Tree: A Step Towards Sustainable Dyeing. Sustainable Chemistry and Pharmacy 2020; 17: 100293.
  • 7. Panko J, Hitchcock K. Chemical Footprint Ensuring Product Sustainability. [2012-10-04]. http://chemrisknano.com/chemrisk/images/stories/Chemical_Footprint_Ensuring_Product_Sustainability.pdf.
  • 8. Roos S, Posner S, Jönsson C, et al. Is Unbleached Cotton Better Than Bleached? Exploring the Limits of Life-Cycle Assessment in the Textile Sector. Clothing and Textiles Research Journal 2015; 33(4): 448-459.
  • 9. Roos S, Holmquist H, Jonsson C, et al. USEtox Characterisation Factors for Textile Chemicals Based on a Transparent Data Source Selection Strategy. International Journal of Life Cycle Assessment 2018; 23(4): 890-903.
  • 10. Tian ZJ, Wang LL, Li Y. Calculation and Assessment of Chemical Footprint of Textiles and Apparel. Silk 2019; 56(1): 33-37.
  • 11. Yi L, Yan L, Qing H. Chemical Footprint of Textile and Apparel Products: An Assessment of Human and Ecological Toxicities Based on USEtox Model. The Journal of the Textile Institute 2020; DOI: 10.1080/00405000.2019.1710907.
  • 12. Qian JH, Qiu YY, Yang YD. Accounting and Evaluation of Chemical Footprint of Cotton Woven Fabrics. Industrial Textila 2020; 71(3): 209-214.
  • 13. Hauschild MZ, Huijbregts M, Jolliet O, et al. Building a Model Based on Scientific Consensus for Life Cycle Impact Assessment of Chemicals: The Search for Harmony and Parsimony. Environmental Science & Technology 2008; 42: 7032-7037.
  • 14. Luo D, Wang X. The Multi-Attribute Grey Target Decision Method for Attribute Value within Three-Parameter Interval Grey Number. Applied Mathematical Modelling 2012; 36(5): 1957-1963.
  • 15. Ren XQ, Zhang HM, Hu RH, et al. Location of Electric Vehicle Charging Stations: A Perspective using the Grey Decision-Making Model. Energy 2019; 173: 548-553.
  • 16. Lv LS, Deng ZH, Meng HJ, et al. A Multi-Objective Decision-Making Method for Machining Process Plan and an Application. Journal of Cleaner Production 2020; 260: 121072.
  • 17. Buschle-Diller G, Yang XD, Yamamoto R. Enzymatic Bleaching of Cotton Fabric with Glucose Oxidase. Textile Research Journal 2001; 71(5): 388-394.
  • 18. Farooq A, Ali S, Abbas N, et al. Comparative Performance Evaluation of Conventional Bleaching and Enzymatic Bleaching with Glucose Oxidase on Knitted Cotton Fabric. Journal of Cleaner Production 2013; 42: 167-171.
  • 19. Eren HA, Anis P, Davulcu A. Enzymatic One-bath Desizing – Bleaching – Dyeing Process for Cotton Fabrics. Textile of Research Journal 2009; 79(12): 1091-1098.
  • 20. Easson M, Condon B Villalpando A, et al. The Application of Ultrasound and Enzymes in Textile Processing of Greige Cotton. Ultrasonics London Then Amsterdam 2018; 84: 223-233.
  • 21. Vankar PS, Shanker R. Ecofriendly Ultrasonic Natural Dyeing of Cotton Fabric with Enzyme Pretreatments. Desalination 2008; 230(1-3): 62-69.
  • 22. Liu SQ, Chen ZY, Sun JP, et al. Ecofriendly Pretreatment of Grey Cotton Fabric with Enzymes in Supercritical Carbon Dioxide Fluid. Journal of Cleaner Production 2016; 120: 85-94.
  • 23. Pu DJ, Zhong Q, Wang JP. Anhydrous Softening Finishing of Cotton Towel at Low Temperature. Journal of Zhejiang Sci-Tech University 2016; 35(3): 327-332.
  • 24. Chen GX. Development Retrospect and Direction Discuss of Fabric Softeners. Textile Auxiliaries 2019; 36(2): 9-12.
  • 25. Bansode AS, Pukale DD, Jadhav NL, et al. Sonochemical Enzymatic Esterification of Oleic Acid and Tri-Ethanolamine for a Fabric Softener in Textile Application. Chemical Engineering and Processing: Process Intensification 2019; 137: 128-136.
  • 26. Mohammad I, Hongjuan Z, Uzma S, et al. Low Liquor Dyeing of Cotton Fabric with Reactive Dye By an Eco-Friendly Technique. Journal of Cleaner Production 2018; 197: 1480-1487.
  • 27. Elmaaty TA, Kazumasa H, Elsisi H, et al. Pilot Scale Water Free Dyeing of Pure Cotton Under Supercritical Carbon Dioxide. Carbohydrate Polymer Technologies and Applications 2020; 1, 25 December: 100010.
  • 28. Luo X, White J, Thompson R, et al. Novel Sustainable Synthesis of Dyes for Clean Dyeing of Wool and Cotton Fibres in Supercritical Carbon Dioxide. Journal of Cleaner Production 2018; 199: 1-10.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba295663-f779-4154-a92c-61df0474ca7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.