Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Phytoplankton community structure was studied from 2002 to 2016 in the Vistula Lagoon (southern Baltic Sea) in the context of the 2010 shift in its population, as well as the reason for this shift and its environmental impact. This evident shift was indicated by Multidimensional Scaling at the Bray Curtis similarity level of 31%. Before 2010, the primary components of phytoplankton were Cyanobacteria (up to 98% of the biomass, October 2007) and Chlorophyta (40%, July 2002). After 2010, the contribution of Cyanobacteria considerably decreased, and the proportions of other phyla increased. The total phytoplankton biomass positively correlated with phosphorus, and Cyanobacteria biomass with silica. Evident changes were also observed in the seasonal dynamics of phytoplankton. Before 2010, the highest values of biomass occurred in autumn, and were related to high biomass of Cyanobacteria. Higher biomass has been recently reached in spring, during the dominance of Ochrophyta associated with Chlorophyta, Charophyta, and Cryptophyta. Generalised additive models showed a significant decreasing trend of the total phytoplankton biomass, Cyanobacteria, Chlorophyta, and flagellates, suggesting a decrease in eutrophication. This trend is concurrent with a considerable increase in the ratio of zooplankton to phytoplankton biomass since 2010. The increased ratio, however, did not result from elevated zooplankton biomass, but from the drop in phytoplankton biomass. Therefore, the most probable reason for the decrease in phytoplankton biomass was the simultaneous decrease in the concentration of all nutrients. The potential additional impact of filtration by a new alien bivalve Rangia cuneata G. B. Sowerby I, 1832 is also discussed.
Czasopismo
Rocznik
Tom
Strony
538--555
Opis fizyczny
Bibliogr. 79 poz., mapa, rys., wykr.
Twórcy
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
autor
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
Bibliografia
- [1] Albertano, P., Di Somma, D., Capucci, E., 1997. Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image-analyzed fluorescence microscopy. J. Plankton Res. 10, 1405-1416, https://doi.org/10.1093/plankt/19.10.1405.
- [2] Albrecht, M., Pröschold, T., Schumann, R., 2017. Identification of Cyanobacteria in a Eutrophic Coastal Lagoon on the Southern Baltic Coast. Front. Microbiol. 8, 1-16, https://doi.org/10.3389/fmicb.2017.00923.
- [3] Bober, B., Bialczyk, J., 2017. Determination of the toxicity of the freshwater cyanobacterium Woronichinia naegeliana (Unger) Elenkin. J. Appl. Phycol. 29, 1355-1362, https://doi.org/10.1007/s10811-017-1062-1.
- [4] Burska, D., Pryputniewicz-Flis, D., Bolałek, J., Zalewski, M., 2018. Nutrients in the waters of the Vistula Lagoon. In: Bolałek, J. (Ed.), Vistula Lagoon. Wydawnictwo Naukowe PWN SA, Warszawa, 190-210 (in Polish).
- [5] Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., 1985. Cascading trophic interactions and lake productivity. Bioscience 35, 634-639, https://doi.org/10.2307/1309989.
- [6] Cerco, C. F., Noel, M. R., 2010. Monitoring, modeling, and management impacts of bivalve filter feeders in the oligohaline and tidal fresh regions of the Chesapeake Bay system. Ecol. Model. 221, 1054-1064, http://dx.doi.org/10.1016/j.ecolmodel.2009.07.024.
- [7] Chubarenko, B., Domnin, D., Navrotskaya, S., Stont, Z., Chechko, V., Bobykina, V., Pilipchuk, V., Karmanov, K., Domnina, A., Bukanova, T., Topchaya, V., Kileso, A., 2017. Transboundary Lagoons of the Baltic Sea. In: Kosyan, R. (Ed.), Diversity of Russian Estuaries and Lagoons Exposed to Human Influence, 149-189.
- [8] Chubarenko, B. V., Leitsina, L. V., Esiukova, E. E., Kurennoy, D. N., 2012. Model analysis of the currents and wind waves in the Vistula Lagoon of the Baltic Sea. Oceanology 52, 748-753, https://doi.org/10.1134/S000143701206001X.
- [9] Dailidienė, I., Baudler, H., Chubarenko, B., Navrotskaya, S., 2011. Long term water level and surface temperature changes in the lagoons of the southern and eastern Baltic. Oceanologia 53 (1-TI), 293-308, https://doi.org/10.5697/oc.53-1-TI.293.
- [10] De Senerpont Domis, L. N., Mooij, W. M., Huisman, J., 2007. Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. Hydrobiologia 584, 403-413, https://doi.org/10.1007/s10750-007-0609-6.
- [11] Dmitrieva, O. A., Semenova, A. S., 2011. Seasonal dynamics of phyto and zooplankton and their interactions in the hypertrophic reservoir. Inland Water Biol 4, 308-315, https://doi.org/10.1134/S1995082911030059.
- [12] Derolez, Valé., Soudant, D., Malet, N., Chiantella, C., Richard, M., Abadie, E., Aliaume, C., Bec, B., 2020. Two decades of oligotrophication: Evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuar. Coast. Shelf S. 241, https://doi.org/10.1016/j.ecss.2020.106810.
- [13] Edler, L., 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. The Baltic Marine Biologists 5, 1-38.
- [14] Edler, L., Elbrächter, M., 2010. The Utermöhl method for quantitative phytoplankton analysis. Intergovernmental Oceanographic Commission Manuals and Guides 55. In: Karlson, B., Cusack, C., Bresnan, E. (Eds.), Microscopic and molecular methods for quantitative phytoplankton analysis. UNESCO, Paris, 13-20.
- [15] Eriksson, H., Pastuszak, M., Löfgren, S., Mörth, C.-M., Humborg, C., 2007. Nitrogen budgets of the Polish agriculture 1960-2000 — Implication for riverin nitrogen loads to the Baltic Sea. Biogeochemistry 85, 153-168, https://doi.org/10.1007/s10533-007-9126-y.
- [16] Evans, C. A., O’Reilly, J. E., Thomas, J. P., 1987. A handbook for the measurement of chlorophyll-a and primary productivity. BIOMASS Sci. Ser. 8, Texas A & M University, 114 pp.
- [17] Eyto, E., Kelly, S., Ryder, E., Dillane, M., Archer, L., O’Cathain, D., Daly, S., Lyons, K., Obrador, B., Brentrup, J., Naumoski, A., Poole, R., Lucey, F., Jennings, E., 2018. High frequency monitoring reveals fine scale spatial and temporal dynamics of the deep chlorophyll maximum of a stratified coastal lagoon. Estuar. Coast. Shelf S. 218, 278-291, https://doi.org/10.1016/j.ecss.2018.12.010.
- [18] Gasiũnaitè, Z. R., Cardoso, A. C., Heiskanen, A. S., Henriksen, P., Kauppila, P., Olenina, I., Pilkaitytè, R., Purina, I., Razinkovas, A., Sagert, S., Schubert, H., Wasmund, N., 2005. Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication. Estuar. Coast. Shelf S. 65, 239-252, https://doi.org/10.1016/j.ecss.2005.05.018.
- [19] Grabowski, M., Konopacka, A., Jazdzewski, K., Janowska, E., 2006. Invasions of alien gammarid species and retreat of natives in the Vistula Lagoon (Baltic Sea, Poland). Helgoland Mar. Res. 60, 90-97, https://doi.org/10.1007/s10152-006-0025-8.
- [20] Grasshoff, K., Erhardt, M., Kremling, K. (Eds.), 1983. Methods of seawater analysis. Verlag Chemie, Germany, 419 pp., https://doi.org/10.1002/iroh.19850700232.
- [21] Gyllstrom, M., Hansson, L. A., Jeppesen, E., Garcia-Criado, F., Gross, E., Irvine, K., Kairesalo, T., Kornijów, R., Miracle, M. R., Nykanen, M., Nõges, T., Romo, S., Stephen, D., Van Donk, E., Moss, B., 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnol. Oceanogr. 50, 2008-2021, https://doi.org/10.4319/lo.2005.50.6.2008.
- [22] Haney, J., 1987. Field studies on zooplankton-cyanobacteria interactions. New Zeal. J. Mar. Fresh. 21, 467-475, https://doi.org/10.1080/00288330.1987.9516242.
- [23] Hawley, G. R., Whitton, B. A., 1991. Seasonal Changes in Chlorophyll-containing Picoplankton Populations of Ten Lakes in Northern England. Int. Revue ges. Hydrobiol. 76, 545-554, https://doi.org/10.1002/iroh.19910760407.
- [24] HELCOM, 1988. Guidelines for Baltic Monitoring Programme for the third stage. Part D. Biological determinands. In: Baltic Sea Environment Proceedings No. 27 D.
- [25] HELCOM, 2006. Manual for marine monitoring in the COMBINE programme of HELCOM. Part C. Programme for monitoring of eutrophication and its effects. Annex C-6: Phytoplankton species composition, abundance and biovolume, Helsinki, http://www.helcom.fi/Lists/Publications/Manual%20for%20Marine%20Monitoring%20in%20the%20COMBINE%20Programme%20of%20HELCOM.pdf, (accessed on 29.04.2019).
- [26] HELCOM, 2013. Manual for Marine Monitoring in the COMBINE Programme of HELCOM. Part C. Programme for monitoring of eutrophication and its effects, Annex C-2, Hydrographic and hydrochemical variables, Helsinki, https://helcom.fi/media/publications/Manual-for-Marine-Monitoring-in-the-COMBINE-Programme-of-HELCOM.pdf.
- [27] HELCOM, 2015. Manual for Marine Monitoring in the COMBINE Programme of HELCOM, Helsinki, http://helcom.fi/Documents/Action%20areas/Monitoring%20and%20assessment/Manuals%20and%20Guidelines/Manual%20for%20Marine%20Monitoring%20in%20the%20COMBINE%20Programme%20of%20HELCOM.pdf.
- [28] HELCOM, 2017. Manual for Marine Monitoring in the COMBINE Programme of HELCOM: Guidelines for monitoring of mesozooplankton. Helsinki, 11 pp., http://www.helcom.fi/Documents/Action%20areas/Monitoring%20and%20assessment/Manuals%20and%20Guidelines/Guidelines%20for%20monitoring%20of%20mesozooplankton.pdf.
- [29] Hernroth, L., 1985. Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton assessment. BMB Publication 10, 1-32.
- [30] Hessen, D. O., Faafeng, B. A., Brettum, P., 2003. Autotroph: herbivore biomass ratios; carbon deficits judged from plankton data. Hydrobiologia 491, 167-175, https://doi.org/10.1023/A:1024456825718.
- [31] Hopkins, S. H., Anderson, J. W., Horvath, K., 1973. The brackish water clam Ranqia cuneata as indicator of ecological effects of salinity changes in coastal water. U.S. Corps of Engineers Rep. H-23-l., 250 pp.
- [32] Jablonska-Barna, I., Rychter, A., Kruk, M., 2013. Biocontamination of the western Vistula Lagoon (south-eastern Baltic Sea, Poland). Oceanologia 55 (3), 751-763, https://doi.org/10.5697/oc.55-3.751.
- [33] Jeppesen, E., Lauridsen, T. L., Mitchell, S. F., Christoffersen, K., Burns, C. W., 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J. Plankton. Res. 22, 951-968, http://dx.doi.org/10.1093/plankt/22.5.951.
- [34] Jeppesen, E., Sondergaard, M., Kanstrup, E., Petersen, B., Eriksen, R. B., Hammershoj, M., Mortensen, E., Jensen, J. P., Have, A., 1994. Does the impact of nutrients on the biological structure and function of brackish and fresh-water lakes differ? Hydrobiologia 275, 15-30, https://doi.org/10.1007/BF00026696.
- [35] Kirkwood, D. S., 1996. Nutrients: Practical notes on their determination in sea water. ICES Techniques in Marine Environmental Sciences (17), https://repository.oceanbestpractices.org/bitstream/handle/11329/696/TIMES17%281%29.pdf?sequence=1&isAllowed=y.
- [36] Kobos, J., Nawrocka, L., 2018. Phytoplankton of the Vistula Lagoon. In: Bolałek, J. (Ed.), Vistula Lagoon Wydawnictwo Naukowe PWN SA, Warszawa, 241-251 (in Polish).
- [37] Kornijów, R., 2018. Ecosystem of the Polish part of the Vistula Lagoon from the perspective of alternative stable states concept, with implications for management issues. Oceanologia 60 (3), 390-404, https://doi.org/10.1016/j.oceano.2018.02.004.
- [38] Kornijów, R., Karpowicz, M., Ejsmont-Karabin, J., Nawrocka, L., de Eyto, E., Grzonkowski, K., Magnuszewski, A., Jakubowska, A., Wodzinowski, T., Woźniczka, A., 2020. Patchy distribution of phyto- and zooplankton in large and shallow lagoon under ice cover and resulting trophic interactions. Mar. Freshwater Res., https://doi.org/10.1071/MF19259.
- [39] Kornijów, R., Pawlikowski, K., Drgas, A., Rolbiecki, L., Rychter, A., 2018. Mortality of post-settlement clams Rangia cuneata (Mactridae, Bivalvia) at an early stage of invasion in the Vistula Lagoon (South Baltic) due to biotic and abiotic factors. Hydrobiologia 811, 207-219, https://doi.org/10.1007/s10750-017-3489-4.
- [40] Krevs, A., Koreiviene, J., Paskauskas, R., Sulijiene, R., 2007. Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period. Transit. Waters Bull. 1, 17-26, https://doi.org/10.1285/i1825229Xv1n1p17.
- [41] Kruk, M., Jaworska, B., Jablonska-Barna, I., Rychter, A., 2016. How do differences in the nutritional and hydrological background influence phytoplankton in the Vistula Lagoon during a hot summer day? Oceanologia 58 (4), 341-352, https://doi.org/10.1016/j.oceano.2016.05.004.
- [42] Krylova, O. I., 1985. Activity of plankton and benthos in the Kurshskii and Vislinskii gulfs of the Baltic Sea related with their ecological deviations, 21.10.85, TsNI ITEIRKh No. 714-RKh (AtlantNIIRO, Kaliningrad), (in Russian).
- [43] Łomniewski, K., 1958. The Firth of Vistula. PWN, Warsaw 106 pp., (in Polish, English summary).
- [44] Margoński, P., Horbowa, K., 2003. Are there trends in water quality, chlorophyll a and zooplankton of the Vistula Lagoon (Southern Baltic Sea) as a result of changes in nutrient loads? Diffuse Pollution Conf. Dublin, ECSA 9 Nutrients 6, 162-169, https://www.ucd.ie/dipcon/docs/theme06/theme06_32.PDF.
- [45] Margoński, P., Horbowa, K., Gromisz, S., Różański, S., Różańska, Z., Wątroba, K., Niemirycz, E., 2003. Long-term changes in the water quality and biota in Vistula Lagoon and its drainage basin. Mantra-East, 45, pp.
- [46] Mazur-Marzec, H., Browarczyk-Matusiak, G., Forycka, K., Kobos, J., Plinski, M., 2010. Morphological, genetic, chemical and ecophysiological characterisation of two Microcystis aeruginosa isolates from the Vistula Lagoon, southern Baltic. Oceanologia 52 (1), 127-146, http://dx.doi.org/10.5697/oc.52-1.127.
- [47] Moore, S. K., Trainer, V. L., Mantua, N. J., Parker, M. S., Laws, E. A., Backer, L. C., Fleming, L. E., 2008. Impacts of climate variability and future climate change on harmful algal blooms and human health. Env. Health 7 (Suppl. 2), S4, https://doi.org/10.1186/1476-069X-7-S2-S4.
- [48] Moss, B., 1994. Brackish and freshwater shallow lakes — different systems or variations on the same theme? Hydrobiologia 275-276/Dev. Hydrobiol. 94, 1-14, http://dx.doi.org/10.1007/BF00026695.
- [49] Muñiz, O., Rodríguez, J. G., Revilla, M., Laza-Martínez, A., Seoane, S., Franco, J., 2020. Inhomogeneity detection in phytoplankton time series using multivariate analyses. Oceanologia 62 (3), 243-254, https://doi.org/10.1016/j.oceano.2020.01.004.
- [50] Nawrocka, L., Kobos, J., 2011. The trophic state of the Vistula Lagoon: an assessment based on selected biotic and abiotic parameters according to the Water Framework Directive. Oceanologia 53 (3), 881-894, https://doi.org/10.5697/oc.53-3.881.
- [51] Newton, A., Icely, J., Cristina, S., Brito, A., Cardoso, A. C., Colijn, F., Riva, S. D., Gertz, F., Hansen, J. W., Holmer, M., Ivanova, K., Leppakoski, E., Canu, D. M., Mocenni, C., Mudge, S., Murray, N., Pejrup, M., Razinkovas, A., Reizopoulou, S., Perez-Ruzafa, A., Schernewski, G., Schubert, H., Carr, L., Solidoro, C., Viaroli, P., Zaldivar, J. M., 2014. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf S. 140, 95-122, https://doi.org/10.1016/j.ecss.2013.05.023.
- [52] Nowicka-Krawczyk, P. B., Żelazna-Wieczorek, J., 2017. The genus Woronichinia (Cyanobacteria) in natural lakes of Drawa National Park (Poland). Polish Bot. J. 62, 253-263, https://doi.org/10.1515/pbj-2017-0020.
- [53] Olenina, I., Hajdu, S., Andersson, A., Edler, L., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., Niemkiewicz, E., 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt.Sea Environ. Proc. No. 106, 144 pp., https://epic.awi.de/id/eprint/30141/1/bsep106.pdf.
- [54] Olsen, L. A., 1976. Ingested material in two species of estuarine bivalves: Rangia cuneata (Gray) and Polymesoda caroliniana (Bosc). Proceedings of the National Shellfish Association 11, 103-104.
- [55] Piwosz, K., Kownacka, J., Ameryk, A., Zalewski, M., Pernthaler, J., 2016. Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic Sea). J. Phycol. 52, 626-637, https://doi.org/10.1111/jpy.12424.
- [56] Pliński, M., 1972. Badania nad glonami południowego Bałtyku oraz Zalewu Szczecińskiego i Wiślanego. Zeszyty Naukowe UG, ser. Oceanografia 1, 59-72 (in Polish).
- [57] Pliński, M., Simm, A., 1978. Seasonal fluctuations in the composition, distribution and quantity of phytoplankton in the Vistula Lagoon in 1974 and 1975. Stud. Mater. Oceanol., Biol. Morza 4 (21), 53-80, (in Polish).
- [58] Renk, H., Ochocki, S., Zalewski, M., Chmielowski, H., 2001. Environmental factors controlling primary production in the Polish part of the Vistula. Bull. Sea Fisheries Inst. 1 (152), 77-95.
- [59] Rudinskaya, L. V., Gusev, A. A., 2012. Invasion of the North American wedge clam Rangia cuneata (G. B. Sowerby I, 1831) (Bivalvia: Mactridae) in the Vistula Lagoon of the Baltic. Sea. Russ. J. Biol. Invasions 3, 220-229, https://doi.org/10.1134/S2075111712030071.
- [60] Rybicka, D., 2005. Potentially toxic blue-green algae [Cyanoprokaryota] in the Vistula Lagoon. Oceanol. Hydrobiol. St. 34 (Suppl. 3), 161-176.
- [61] Rychter, A., Jabłońska-Barna, I., 2018. Macozoobentos of the Vistula Lagoon. In: Bolałek, J. (Ed.), Vistula Lagoon PWN., Warszawa, 271-287 (in Polish).
- [62] Sagert, S., Rieling, T., Eggert, A., Schubert, H., 2008. Development of a phytoplankton indicator system for the ecological assessment of brackish coastal waters (German Baltic Sea coast). Hydrobiologia 611, 91-103, https://doi.org/10.1007/s10750-008-9456-3.
- [63] Schernewski, G., Neumann, T., Behrendt, H., 2011. Sources, dynamics and management of phosphorus in a southern Baltic estuary. In: Harff, J., Bjorck, S., Hoth, P. (Eds.), The Baltic Sea Basins. Springer, Berlin: Heidelberg, 373-388.
- [64] Semenova, A. S., Dmitrieva, O. A., 2013. Impact of invasive species Rangia cuneata (Sowerby I, 1832) on the plankton community of the Vistula Lagoon (Baltic Sea). IV International symposium “Invasion of alien species in Holarctic” 22-27 September 2013, Borok, Book of abstracts, p. 154.
- [65] Sondergaard, M., Kristensen, P., Jeppesen, E., 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso. Denmark. Hydrobiologia 228, 91-99, https://doi.org/10.1007/BF00006480.
- [66] Strayer, D. L., Caraco, N. F., Cole, J. J., Findlay, S., Pace, M. L., 1999. Transformation of freshwater ecosystems by bivalves — A case study of zebra mussels in the Hudson River. Bioscience 49, 19-27, https://doi.org/10.1525/bisi.1999.49.1.19.
- [67] Strickland, J. D. H., Parsons, T. R., 1968. A practical handbook of seawater analysis. Fish. Res. Board of Canada Bull. 169, Ottawa.
- [68] Szarejko-Łukaszewicz, D., 1957. Qualitative investigations of phytoplankton of Firth of Vistula in 1953. Prace Morskiego Instytutu Rybackiego w Gdyni 9, 439-451.
- [69] Tenore, K. R., Horton, D. B., Duke, T. W., 1968. Effects bottom substrate on the brackish water bivalve Rangia cuneata. Chesapeake Science 9, 238-266, https://doi.org/10.2307/1351314.
- [70] Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9, 1-38.
- [71] Verdonschot, P. F. M., Spears, B. M., Feld, C. K., Brucet, S., Keizer-Vlek, H., Borja, A., Elliott, M., Kernan, M., Johnson, R. K., 2013. A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704, 453-474, https://doi.org/10.1007/s10750-012-1294-7.
- [72] Viaroli, P., Bartoli, M., Giordani, G., Naldi, M., Orfanidis, S., Zaldivar, J. M., 2008. Community shifts, alternative stable states, biogeochemical controls and feedbacks in eutrophic coastal lagoons: a brief overview. Aquat. Conserv. 18, 105-117, https://doi.org/10.1002/aqc.956.
- [73] Warzocha, J., Szymanek, L., Witalis, B., Wodzinowski, T., 2016. The first report on the establishment and spread of the alien clam Rangia cuneata (Mactridae) in the Polish part of the Vistula Lagoon (southern Baltic). Oceanologia 58 (1), 54-58, https://doi.org/10.1016/j.oceano.2015.10.001.
- [74] Wasmund, N., Nausch, G., Matthaus, W., 1998. Phytoplankton spring blooms in the southern Baltic Sea - spatio-temporal development and long-term trends. J. Plankton. Res. 20, 1099-1117, https://doi.org/10.1093/plankt/20.6.1099.
- [75] Witek, Z., Bralewska, J., Chmielowski, H., Drgas, A., Gostkowska, J., Kokacz, M., Knurowski, J., Krajewska-Sołtys, A., Lorenz, Z., Maciejewska, K., Mackiewicz, T., Nakonieczny, J., Ochocki, S., Warzocha, J., Piechura, J., Renk, H., Stopiński, M., Witek, B., 1993. Structure and function of marine ecosystem in the Gdańsk Basin on the basis of studies performed in 1987. Stud. Mater. Oceanol. 63, 1-124.
- [76] Witek, Z., Zalewski, M., Wielgat-Rychert, M., 2010. Nutrient stocks and fluxes in the Vistula Lagoon at the end of the twentieth century. Wyd. Nauk. Akademii Pomorskiej w Słupsku, Słupsk and NMFRI, Gdynia, 186 pp., https://wydawnictwo.apsl.edu.pl/biologia/31-nutrient-stocks-and-fluxes-in-the-vistula-lagoon.html.
- [77] Wong, W. H., Rabalais, N. N., Turner, R. E., 2010. Abundance and ecological significance of the clam Rangia cuneata (Sowerby, 1831) in the upper Barataria Estuary (Louisiana, USA). Hydrobiologia 651, 305-315, https://doi.org/10.1007/s10750-010-0310-z.
- [78] Wood, S. N., 2014. mgcv: GAMs with GCV/AIC/REML Smoothness Estimation and GAMMs by PQL. R Package Version 1.8-2, http://cran.r-project.org/package=mgcv.
- [79] Zilius, M., Giordani, G., Petkuviene, J., Lubiene, I., Ruginis, T., Bartoli, M., 2015. Phosphorus mobility under short-term anoxic conditions in two shallow eutrophic coastal systems (Curonian and Sacca di Goro lagoons). Estuar. Coast. Shelf S. 164, 134-146, https://doi.org/10.1016/j.ecss.2015.07.004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba285039-6fe4-4bb4-99a4-ca65b6e712d5