PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using microwave refraction to determine local inhomogeneities of a rotating plasma

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To determine the local inhomogeneities of a rotating plasma, the method based on microwave refraction was used. The method is based on spectral and correlation analysis of the refl ected signals from the rotating plasma layer at normal and inclined microwave incidence. This method allowed us to determine local inhomogeneities of plasma electron density, angles of azimuthal displacement of grooves, and its angular frequency of rotation. Using an additional 4th horn antenna, in contrast to previous works, it was possible to fi nd and analyze two regions with azimuthal inhomogeneities in the rotating plasma. Analysis of the refl ected signals shows the presence of four grooves, and the angular frequency of rotation  = 1.16 × 104 rad/s was also determined.
Czasopismo
Rocznik
Strony
19--24
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
  • Institute of Plasma Physics National Science Center “Kharkiv Institute of Physics and Technology” Kharkiv, Ukraine
Bibliografia
  • 1. Lehnert, B. (1971). Rotating plasmas review paper rotating plasmas. Nucl. Fusion, 11(5), 485. http://iopscience.iop.org/0029-5515/11/5/010.
  • 2. Boeuf, J. -P. (2014). Rotating structures in low temperature magnetized plasmas – insight from particle simulations. Front. Physics, 2, 74. https://doi.org/10.3389/fphy.2014.00074.
  • 3. Boeuf, J. -P., & Smolyakov, A. (2018). Preface to special topic: Modern issues and applications of E x B plasmas. Phys. Plasmas, 25(6), 061001. https://doi.org/10.1063/1.5040848.
  • 4. Kaganovich, I. D., Smolyakov, A., Raitses, Y., Ahedo, E., Mikellides, I. G., Jorns, B., Taccogna, F., Gueroult, R., Tsikata, S., Bourdon, A., Boeuf, J. -P., Keidar, M., Powis, A. T., Merino, M., Cappelli, M., Hara, K., Carlsson, J. A., Fisch, N. J., Chabert, P., Schweigert, I., Lafleur, T., Matyash, K., Khrabrov, A. V., Boswell, R. W., & Fruchtman, A. (2020). Physics of ExB discharges relevant to plasma propulsion and similar technologies. Phys. Plasmas, 27(12), 120601. https://doi.org/10.1063/5.0010135.
  • 5. Lucken, R., Bourdon, A., Lieberman, M. A., & Chabert, P. (2019). Instability-enhanced transport in low temperature magnetized plasma. Phys. Plasmas, 26(7), 070702. https://doi.org/10.1063/1.5094422.
  • 6. Gravier, E., Brochard, F., Bonhomme, G., Pierre, T., & Briançon, J. L. (2004). Low-frequency instabilities in a laboratory magnetized plasma column. Phys. Plasmas, 11(2), 529–537. https://doi.org/10.1063/1.1636479.
  • 7. Lockwood Estrin, F., Karkari, S. K., & Bradley, J. W. (2017). Triple probe interrogation of spokes in a HiPIMS discharge. J. Phys. D-Appl. Phys., 50(29). https://doi.org/10.1088/1361-6463/aa7544.
  • 8. Hartfuss, H. J., & Geist, T. (2013). Fusion plasma diagnostics with mm-waves: An introduction. Hamburg: Wiley.
  • 9. Mazzucato, E. (2014). Electromagnetic waves for thermonuclear fusion research. World Scientific Publishing.
  • 10. Conway, G. D. (2006). Microwave refl ectometry for fusion plasma diagnosis. Nucl. Fusion, 46(9), S665. https://doi.org/10.1088/0029-5515/46/9/S01.
  • 11. Grekov, D. L., & Tretiak, K. K. (2017). Investigation of dual polarization reflectometry for determination of plasma density and magnetic field in a spherical tokamak. J. Fusion Energy, 36(1), 1–8. https://doi.org/10.1007/s10894-016-0114-x
  • 12. Pavlichenko, O. S., Skibenko, A. I., Fomin, I. P., Pinos, I. B., Ocheretenko, V . L., & Berezhniy, V. L. (2000). A simple method of poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry. Probl. At. Sci. Technol., 6, 172–174.
  • 13. Prisiazhniuk, D., Krämer-Flecken, A., Conway, G. D., Happel, T., Lebschy, A., Manz, P., Nikolaeva, V., & Stroth, U. (2017). Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry. Plasma Phys. Control. Fusion, 59(2), 025013.https://doi.org/10.1088/1361-6587/59/2/025013.
  • 14. Siusko, Y. V., & Kovtun, Yu. V. (2021). An application of microwaves refraction for inhomoge neous plasma diagnostic. Probl. At. Sci. Technol., 2, 163–170.https://doi.org/10.46813/2021-131-163.
  • 15. Kovtun, Yu. V., & Siusko, Y. V. (2019). Determining local inhomogeneities of rotating plasma density via microwave refraction. Phys. Lett. A, 383(31), 125880.https://doi.org/10.1016/j.physleta.2019.125880.
  • 16. Kovtun, Y., & Siusko, Y. (2020). Determining the angular frequency of rotating cylinder via microwave. In 2020 IEEE Ukrainian Microwave Week, UkrMW 2020 – Proceedings (pp. 888–892). DOI: 10.1109/UkrMW49653.2020.9252707.
  • 17. Kovtun, Y. V., Shapoval, A. N., & Siusko, Y. V. (2019). Observation of multiply charged states ions in a high-power pulsed refl ex discharge. Plasma Sources Sci. Technol., 28(10), 105009. https://doi.org/10.1088/1361-6595/ab46c8.
  • 18. Kovtun, Yu. V., Skibenko, A. I., Skibenko, E. I., Larin, Yu. V., & Yuferov, V. B. (2009). Emission of multicomponent plasma pulsed refl ex discharge. Bulletin of the National Technical University “KhPI” Series “High voltage engineering and electrophysics”, 39, 101–108.
  • 19. Shanmugan, K. S., & Breipohl, A. M. (1988). Random signals, detection, estimation and data analysis. Hoboken: Wiley.
  • 20. Kovtun, Yu. V., & Siusko, Y. V. (2018). Determining local inhomogeneities of the rotating plasma density via microwave refraction. In International Conference–School on Plasma Physics and Controlled Fusion. Books of abstract, September 10–13, 2018 (p. 175). Kharkiv, Ukraine.
  • 21. Bendat, J. S., & Piersol, A. G. (2011). Random data: analysis and measurement procedures. John Wiley & Sons.
  • 22. Kovtun, Yu. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2013). Rotation of plasma layers with various densities in crossed EB fi elds. Ukr. J. Phys., 58(05), 450–457. https://doi.org/10.15407/ujpe58.05.0450.
  • 23. Kovtun, Yu. V., Syusko, Y. V., Skibenko, E. I., & Skibenko, A. I. (2018). Experimental study of inhomogeneous refl ex-discharge plasma using microwave refraction interferometry. Ukr. J. Phys., 63(12), 1057.https://doi.org/10.15407/ujpe63.12.1057.
  • 24. Kovtun, Yu. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2013). Rotation of plasma layers with various densities in crossed E  B fi elds. Ukr. J. Phys., 58, 450.
  • 25. Kovtun, Yu. V., Skibenko, A. I., Skibenko, E. I., & Yuferov, V. B. (2013). Analysis of errors in the plasma rotation velocity measurement by the method of microwave correlation reflectometry. In 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (pp. 554–556). https://doi.org/10.1109/MSMW.2013.6622119.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba24e0cd-3307-4bcd-a4bc-5b4cf882c74a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.