PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

One-dimensional semi-analytical model on longitudinal thermal loads of a tram track pile-plank structure buried beneath the pavement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel pile-plank-supported ballastless tram track is employed in southeast of China to mitigate the foundation differential settlement in soft soil regions. In this structure, the channel rails are directly combined with the plank by fasteners and pads. In situ measurement data reveal that the foundation differential settlement is well controlled by this structure and the internal forces of the plank mainly depend on temperature variation. To assess the structural safety and improve the reinforcement design for the pile-plank structure, an efficient and precise calculation algorithm for internal forces of the structure is urgently required. In this work, a one-dimensional (1D) model is proposed to evaluate the longitudinal forces of the embedded pile-plank structure due to temperature variation. The constraints of rails and surrounding concretes (i.e., overlying pavement and the supporting layer) on the embedded structure are considered. The semi-analytical solution of this model is derived and a comprehensive calculation procedure is proposed. Based on the project of Shanghai Tram Line T1, a case study is undertaken to validate the proposed model. The results indicate that the maximum longitudinal displacement of the plank increases with the temperature variation. The critical displacement appears when the temperature variation rises to 15 ℃. The calculated longitudinal forces of the plank are in accordance with the in situ measurement data. This model provides a strong base to the reinforcement design of the pile-plank-supported ballastless tram track.
Rocznik
Strony
599--616
Opis fizyczny
Bibliogr. 34 poz., fot., rys., wykr.
Twórcy
autor
  • Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China
  • Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Shanghai, China
  • China Railway Eryuan Engineering Group East China Survey and Design Co., Ltd, Hangzhou, China
autor
  • Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China
  • Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Shanghai, China
Bibliografia
  • [1] Zhou G, Yi T. Thermal load in large-scale bridges: a state-of-the-art review. Int J Distrib Sens Netw. 2013;2013(217983):1–17.
  • [2] Saetta A, Scotta R, Vitaliani R. Stress analysis of concrete structures subjected to variable thermal loads. J Struct Eng. 1995;121(3):446–57.
  • [3] Al-Sanea SA. Thermal performance of building roof elements. Build Environ. 2002;37:665–75.
  • [4] Kim SH, Cho KI, Won JH, Kim JH. A study on thermal behaviour of curved steel box girder bridges considering solar radiation. Arch Civ MechEng. 2009;9(3):59–76.
  • [5] Jiao B, Guo C, Zhao X, Yang J. On a simplified and practical computational method of analysis for ultra-long reinforced concrete frames under thermal and shrinkage stresses. China Civ Eng J. 2007;40(7):1–4 (in Chinese).
  • [6] Xiao H, Gong X, Yue H. Research on analytic method for mid-span slab of pile-slab structure. J Rail Eng Soc. 2011;154(7):28–33 ((in Chinese)).
  • [7] Su Q, Bai H, Huang J, Li X. Calculation method for embedded continuous pile-board structure under thermal stresses. J South-west Jiaotong Univ. 2012;47(2):181–6 (in Chinese).
  • [8] Ma K, Wang Z. Research on temperature stress of bearing plate in pile-plank structure for high-speed railway. J Shijiazhuang Tiedao Univ (Natural Science). 2012;25(2):47–53 (in Chinese).
  • [9] Zhan Y, Yao H, Jiang G. Design method of pile-slab structure roadbed of ballastless track on soil subgrade. J Central South Univ. 2013;20(7):2072–82.
  • [10] Jiang Y, Han J, Zheng G. Numerical analysis of a pile-slab-sup-ported railway embankment. Acta Geotech. 2014;9:499–511.
  • [11] Ravera E, Sutman M, Laloui L. Load transfer method for energy piles in a group with pile-soil-slab-pile interaction. J Geotech Geoenviron Eng. 2020;146(6):04020042 (1-17).
  • [12] Hedebratt J, Silfwerbrand J. Full-scale test of a pile supported steel fibre concrete slab. Mater Struct. 2014;47:647–66.
  • [13] Yang Y, Yu C, Wu Z, Tu D. Mitigating the bridge end bump problem: a case study of a new slab system with a lower partition slab-pile foundation. Adv Civ Eng. 2020;2020(7986927):1–11.
  • [14] Pourfakhrian L, Bayesteh H. Effect of slab stiffness on the geotechnical performance of energy piled-raft foundation under thermo-mechanical loads. Eur J Environ Civ Eng. 2020. https://doi.org/10.1080/19648189.2020.1812120.
  • [15] Zhu S, Cai C. Interface damage and its effect on vibrations of slab track under temperature and vehicle dynamic loads. Int J Non-Linear Mech. 2014;58:222–32.
  • [16] Song XL, Zhao CF, Zhu XJ. Temperature-induced deformation of CRTS II slab track and its effect on track dynamical properties. SciChina Technol Sci. 2014;57(10):1917–24.
  • [17] Zhong Y, Gao L, Zhang Y. Effect of daily changing temperature on the curling behavior and interface stress of slab track in construction stage. Constr Build Mater. 2018;185:638–47.
  • [18] Zhu S, Cai C. Stress intensity factors evaluation for through-trans-verse crack in slab track system under vehicle dynamic load. Eng Fail Anal. 2014;46:219–37.
  • [19] Tarifa M, Zhang X, Ruiz G, Poveda E. Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Eng Struct. 2015;100:610–21.
  • [20] Zhao P, Liu X, Liu G. Experimental study of temperature gradient in track slab under outdoor conditions in Chengdu area. J Mod Transport. 2014;22(3):148–55.
  • [21] Yang R, Li J, Kang W, Liu X, Cao S. Temperature characteristics analysis of the ballastless track under continuous hot weather. J Transport Eng Part A Syst. 2017;143(9):04017048 (1-10).
  • [22] Poveda E, Yu RC, Lancha JC, Ruiz G. A numerical study on the fatigue life design of concrete slabs for railway tracks. Eng Struct. 2015;100:455–67.
  • [23] Al Hamd RKS, Gillie M, Warren H, Torelli G, Stratford T, Wang Y. The effect of load-induced thermal strain on flat slab behavior at elevated temperatures. Fire Saf J. 2018;97:12–8.
  • [24] Ramadan K, Al-Nimr MA. Analysis of the thermal behavior of a multilayer slab with imperfect contact using the dual-phase-lag heat conduction model. J Heat Transfer. 2008;130(074501):1–5.
  • [25] Wu D, Bai H, Liu Q, Wang W. Practical and simple calculation approach on temperature effect of non-embedded pile-board structure for subgrade. Subgrade Eng. 2013;166(1):51–5 (in Chinese).
  • [26] Muto K. Aseismic design analysis of buildings. Tokyo: Maruzen Company Ltd; 1974.
  • [27] Wu H. Study on calculation method of laterally loaded pile. China Civ Eng J. 1995;28(2):20–8 (in Chinese).
  • [28] National Railway Administration of China. Code for design of continuous welded rail (TB10015-2012). Beijing: China Railway Publishing House; 2013. (in Chinese).
  • [29] Ramamurthi M, Lee JS, Yang SH, Kim YS. Delamination characterization of bonded interface in polymer coated steel using surface based cohesive model. Intel J Precis Eng Manuf. 2013;14(10):1755–65.
  • [30] Liu, Y. Study on characteristics and influences of CRTS II slab track early temperature field. Southwest Jiaotong University. Ph.D. dissertation. 2013. (in Chinese).
  • [31] Li DS. Performance of CRTS II slab ballastless track on the high speed railway bridge. China Academy of Railway Sciences. Ph.D. dissertation. 2016. (in Chinese).
  • [32] Dai G, Su M. Full-scale field experimental investigation on the interfacial shear capacity of continuous slab track structure. Arch Civil Mech Eng. 2016;16(3):485–93.
  • [33] China Academy of Railway Science. Summary of design principle and method of CRTS II ballastless track of Beijing-Tianjin intercity railway. Beijing: China Academy of Railway Sciences; 2007. (in Chinese).
  • [34] Chen L, Chen J, Wang J. Calculation of reasonable tension value for longitudinal connecting reinforcement of CRTS II slab ballast-less track. Appl Sci. 2018;8(2139):1–17.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba2473b9-092d-4950-985e-5362e134c6bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.