PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and characterization of laser welded incoloy 800 HT joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims at finding the effect of laser welding speed on incoloy 800 HT. This alloy is one of the potential materials for Generation IV nuclear plants. Laser welding has several advantages over arc welding such as low fusion zone, low heat input and concentrated heat intensity. Three different welding speeds were chosen and CO2 laser welding was performed. 2D modeling and simulation were done using ANSYS 15 to find out the temperature distribution at different welding speeds and it was found that an increase in the welding speed decreased the temperature. Mechanical properties such as tensile strength, toughness and hardness were evaluated. The effect of welding speed on metallurgical characteristics was studied using optical microscopy (OM), Scanning Electron Microscopy (SEM) with EDS, X-Ray Diffraction (XRD) technique and fractographic analysis. From the results it was found that high welding speed (1400 mm/min) decreased the joint strength. The M23C6 and Ni3Ti carbides were formed in a discrete chain and in a globular form along the grain boundaries of the weld region which increased the strength of the grain boundaries. Fractographic evaluations of the tested specimens for welding speed (1000 and 1200) mm/min showed deep and wide dimples indicating ductile failures.
Twórcy
  • Department of Production Engineering, National Institute of Technology Tiruchirappalli-620015, Tamilnadu, India
autor
  • Department of Production Engineering, National Institute of Technology Tiruchirappalli-620015, Tamilnadu, India
Bibliografia
  • 1. Ganeshan P., Smith G.D., Tassen C.S.: Applications and Materials Performance. Proceedings of the Nickel Cobalt 97 International Symposium, Sudbury, Ontario, August 17–20, 1997, 97–111.
  • 2. Next generation nuclear plant materials research and development program plan, INEEL/EXT-04-02347, Idaho National Engineering and Environmental Lab., Bechtel BWXT Idaho, LLC, Idaho Falls, Idaho, Spet. 2004.
  • 3. Olabi A.G., Alsinani F.O., Alabdulkarim A.A., Ruggiero A., Tricarico L., Benyounis K.Y.: Optimizing the CO2 laser welding process for dissimilar materials. Optics and Lasers in Engineering, 51, 2013, 832–839.
  • 4. Mathieu A., Shabadi R., Deschamps A., Suery M., Matteï S., Grevey D., Cicala E Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire. Optics & Laser Technology, 39, 2007, 652–661.
  • 5. Chatterjee S., Abinandanan T.A., Chattopadhyay K.: Phase formation in Ti/Ni dissimilar welds. Materials Science and Engineering A, 490, 2008, 7–15.
  • 6. Yue Wu., Yan Cai., Dawei Sun., Junjie Zhu., Yixiong Wu.: Characteristics of plasma plume and effect mechanism of lateral restraint during high power CO2 laser welding process. Optics & Laser Technology, 64, 2014, 72–81.
  • 7. Pan M.: Minimization of welding distortion and buckling. Woodhead Publishing Limited, 2011.
  • 8. Amit K., Duck Y., Darek C.: Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel. Optics and Lasers in Engineering, 51(10), 2013, 1143–1152.
  • 9. Chen W., Paul A., Pal M.: CO2 laser welding of galvanized steel sheets using vent holes. Materials and Design, 30 (2), 2009, 245–251.
  • 10. Qian M., Lippold JC.: Liquation phenomena in the simulated heat affected zone of alloy 718 after multiple post weld heat treatment cycles. Welding Journal, 6(3), 2003, 145–150.
  • 11. Honga J.K., Park J.H., Parka N.K., Eomc I.S., Kimc M.B., Kangc C.Y.: Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. Journal of Materials Processing Technology, 201, 2008, 515–520.
  • 12. Pei-quan Xu., Leijun Li., Chunbo (Sam) Zhang.: Microstructure characterization of laser welded Ti-6Al-4V fusion zones. Materials Characterization, 87, 2014, 179 – 185.
  • 13. Torkamany M.J., Sabbaghzadeh J., Hamedi M.J.: Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels. Materials and Design, 34, 2012, 666-672.
  • 14. Mirakhorli F., Malek Ghaini F., Torkamany M.J.: Development of Weld Metal Microstructures in Welding of Duplex Stainless Steel. Journal of Materials Engineering and Performance, 21(2), 2012, 173–217.
  • 15. Sgobbi S., Zhang L., Norris J., Richter K H., Loreau J H.: High powder CO2 and Nd YAG laser welding of wrought Inconel 718. Journal of Materials Processing Technology, 56, 1996, 333-345.
  • 16. Janaki Ram G.D., Reddy A.V., Rao K.P., Reddy G.M., Sarin Sundar J.K.: Microstructure and Tensile Properties of Inconel 718 Pulsed Nd-YAG Laser Welds. Journal of Materials Processing Technology, 167, 2005, 73-82.
  • 17. Gao Peng., Zhang Kai-feng., Zhang Bing-gang., Jiang Shao-song., Zhang Bao-wei.: Microstructures and high temperature mechanical properties of electron beam welded Inconel 718 super alloy thick plate. Transactions of Nonferrous Metals Society of China, 21, 2011, 315-322.
  • 18. Asma Belhadj., Jamel Bessrour., Jean-Eric Masse., Mahmoud Bouhafs., Laurent Barrallier.: Finite element simulation of magnesium alloys laser beam welding. Journal of Materials Processing Technology, 210, 2010, 1131–1137.
  • 19. Siva Shanmugam N., Buvanashekaran G., Sankaranarayanasamy K.: Some studies on weld bead geometries for laser spot welding process using finite element analysis, Materials & Design, 34, 2012, 412-426.
  • 20. Ehlen G., Ludwig A., Sahm P.R.: Simulation of time-dependent pool shape during laser spot welding: transient effects, Metallurgical and Materials Transactions A, 34, 2003, 2947–2961.
  • 21. Xie J., Kar A.: Laser welding of thin sheet steel with surface oxidation. Welding Journal Research Supplement, 78, 1999, 343 –348.
  • 22. Veli Kujanpaa.: Thick-section laser and hybrid welding of austenitic stainless steels, Physics Procedia, 56, 2014, 630-636.
  • 23. Suutala N., Takalo T., Moisio T.: Relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds, Metallurgical and Materials Transactions A, 10(4), 1979, 512-514.
  • 24. Lippold, J. C.: Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels, Welding Journal, 73(6), 1994, 129–139.
  • 25. Incoloy alloy 800H and 800HT, Special Metals, www.specialmetals.com
  • 26. Bhanu Sankara Rao K., et al.: On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H. Scripta Materialia, 31(4), 1994, 381-386.
  • 27. Viktor Guttmann and Jens Timm.: On the influence of the thermal pretreatment on creep and microstructure of alloy 800H. Z Metallkd, 81(6), 1990, 428-432.
  • 28. Todd J.A., Ren J.: The effect of cold work on the precipitation kinetics of an advanced austenitic steel, Materials Science and Engineering: A, 117, 1989, 235-245.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba20b4af-7ce6-4cdb-a5ba-f6551bd9e04c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.