PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Warstwy nanoprętów CuO do zastosowań elektronicznych i sensorowych

Identyfikatory
Warianty tytułu
EN
CuO nanowires films for electronic and sensor application
Języki publikacji
PL
Abstrakty
PL
W artykule zostały przedstawione: metoda otrzymywania warstw nanoprętów CuO, sposoby ich badań oraz przykłady zastosowania. Warstwy nanoprętów CuO zostały przygotowane metodą termicznego utleniania warstwy prekursora jakim jest nanokompozytowa warstw C-Ni otrzymanego przy zastosowaniu technologii PVD. Do badań właściwości warstw nanoprętów CuO zastosowano wysokorozdzielczą skaningową mikroskopię elektronową wraz z mikroanalizą, dyfrakcję rtg., spektrometrię FTIR. Nanopręty CuO mają grubość od 80 do kilkuset nm zaś ich długość leży w przedziale od 2 do kilkunastu μm. W artykule zostały również pokazane przykłady zastosowania warstw jako czujnika różnych gazów.
EN
The paper presents the method of CuO nanorods films preparation, their characterization methods and examples of application as gas sensors. Films of CuO nanorods were prepared by thermal oxidation of the precursor which is a nanocomposite C-Ni film obtained by PVD technology. High resolution scanning electron microscopy (SEM) with microanalysis, X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) spectrometry were applied for designation of CuO nanorods films properties. CuO nanorods have a thickness from 80 to several hundreds nm and their length lies in the range from 2 to several μm. In this paper, the examples of using films as a sensor for different gases are also shown.
Rocznik
Strony
2--7
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Instytut Tele- i Radiotechniczny, Ratuszowa 11, 03-450, Warszawa
autor
  • Instytut Tele- i Radiotechniczny, Ratuszowa 11, 03-450, Warszawa
  • Instytut Tele- i Radiotechniczny, Ratuszowa 11, 03-450, Warszawa
autor
  • Instytut Tele- i Radiotechniczny, Ratuszowa 11, 03-450, Warszawa
  • Instytut Tele- i Radiotechniczny, Ratuszowa 11, 03-450, Warszawa
autor
  • Instytut Tele- i Radiotechniczny, Ratuszowa 11, 03-450, Warszawa
Bibliografia
  • [1] Heinemann Markus, Eifert Bianca, Heiliger Christian. 2013. “Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3". Phys. Rev. B 87: 115111.
  • [2] Chen Guanhua, Langlois Jean-Marc, Guo Yuejin, Goddard, William A. 1989. “Superconducting Properties of copper oxide high-temperature superconductors". Proc. Nad. Acad. Sci. 86: 34473451.
  • [3] Logvenov G, Gozar A, Bozovic I. 2009. “High-Temperature Superconductivity in a Single Copper-Oxygen Plane", Science 326 (5953): 699-702.
  • [4] Saeednia Samira, Monadi Niaz, Iranmanesh Parvaneh, Ardakani Mehdi, Sinaei Samira. 2017. “Preparation and Characterization of Copper Oxide Nanoparticles Through Solid State Thermal Decomposition of an Aqua Nitrato Copper(II) Complex with the Tridentate Schiff-base Ligand as a New Precursor". Nanoscience & Nanotechnology-Asia 7: 1-6.
  • [5] Sharma D, Prajapati AK, Choudhary R, Kaushal RK, Pal D, Sawarkar AN. 2018. “Preparation and characterization of CuO catalyst for the thermolysis treatment of distillery wastewater", Environ Technol. 39 (20): 2604-2612.
  • [6] Dina N. Oosthuizen, David E. Motaung, Hendrik C. Swart. 2018. “Room-Temperature NH3 Gas Sensor Based on CuO Nanoplatelets Prepared by Sonochemical Method". Proc. 17th International Meeting on Chemical Sensors - IMCS 2018: 895-6.
  • [7] Kim Y-S, Hwang I-S, Kim S-J, Lee C-Y, Lee J-H. 2008. "CuO nanowire gas sensors for air quality control in automotive cabin". Sensor Actuat B: Chem 135: 298-303.
  • [8] Kim K, Jeong H, Kim H, Choi K, Kim H, Lee J. 2012. "Selective detection of NO2 using Cr-doped CuO nanorods". Sensors 12: 8013-25.
  • [9] Chen J, Wang K, Hartman L, Zhou W. 2008. “H2S detection by vertically aligned CuO nanowire array sensors". J Phys Chem C 112: 16017-21.
  • [10] Steinhauera S, Brunet E, Maier T, Mutinati G, Kocka A, Freudenberg O. 2013. “Gas sensing properties of novel CuO nanowire devices". Sensor Actuat B: Chem 187: 50-57.
  • [11] Ramgir NS, Ganapathi SK, Kaur M, Datta N, Muthe KP, Aswal DK. 2010. “Sub-ppm H2S sensing at room temperature using CuO thin films". 2010. Sensor Actuat B: Chem 151: 90-6.
  • [12] Aslani A, Oroojpour V. 2011. “CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route". Physica B 406: 144-9.
  • [13] Liao L, Zhang Z, Yan B, Zheng Z, Bao QL, Wu T. 2009. “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors". Nanotechnology 20: 085203.
  • [14]. Şişman O, Kılınç N., Öztürk Z.Z. 2015. “H2 sensing properties of Cu2O nanowires on glass substrate". Procedia Engineering 120: 1170-1174.
  • [15] Musevi S. J., Aslani A., Salimi H. 2013. "H2 Sensing Characterization of Pd-Doped CuO Nanoparticles; Synthesized by Solvothermal method". J. Nano. Adv. Mat. 1 (1): 1-8.
  • [16] Raul P, et al. 2014. “CuO Nanorods: A potential and Efficient Adsorbent in Water Purification". RSC Adv. 4: 40580-40587.
  • [17] Zoolfakar A. S. et al. 2014. “Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications". J. Mater. Chem. C 2: 5247-5270.
  • [18] Zheng L., Liu X. 2007. “Solution-phase synthesis of CuO hierarchical nanosheets at near-neutral pH and near-room temperature". Materials Letters 61: 2222-2226.
  • [19] Czerwosz Elżbieta, Wronka Halina, Kozłowski Mirosław, Diduszko Ryszard. 2018. "Sposób otrzymywania warstw nanoprętów CuO na podłożach miedzianych" - zgł. Pat. P.425471.
  • [20] Czerwosz Elżbieta, Dłużewski Piotr, Nowakowski Robert, Wronka Halina. 1997. “Studies of structural changes in C60/C70 +Ni layers annealed under oxidative conditions". Vacuum 48: 361-368.
  • [21] Dłużewski Piotr, Kozłowski Mirosław, Czerwosz Elżbieta. 2002. “Characterisation of cold electron emitting carbonaceous films containing Ni metalic nanocrystals". Diamond and Related Materials 11(3-6), 809-816.
  • [22] Xu C.H., Woo C.H., Shi S.Q. 2004. “Formation of CuO nanowires on Cu foil". Chemical Physics Letters 399: 62-66.
  • [23] International Centre for Diffraction Data uSA, ICCD 48-1548.
  • [24] International Centre for Diffraction Data uSA, ICCD 5-667.
  • [25] Yanyan Xu, Dairong Chen, Xiuling Jiao. 2005. “Fabrication of CuO Pricky Microspheres with Tunable Size by a Simple Solution Route". J. Phys. Chem. B 109: 13561-13566.
  • [26] Mushtaq A. Dar, Sang H. Nam, Youn S. Kim,Won Bae Kim. 2010. “Synthesis, characterization, and electrochemical properties of self-assembled leaf-like CuO nanostructures". J Solid State Electrochem 14: 1719-1726.
  • [27] Byszewski P, Klusek Z. 2001. “Some properties of fullerenes and carbon nanotubes". Opto-Electron Rev. 9(2): 203-210.
  • [28] Jing D, Pan Z. 2009. “Molecular vibrational modes of C60 and C70 via finite element method". Eur. J. Mech. A-Solid 28: 948-954.
  • [29] Guan H, Zhou W, Fu S, Shao C, Liu Y. 2009. “Electrospun nanofibers of NiO/SiO2 composite". J. Phys. Chem. Solids 70: 1374-1377.
  • [30] Chengfa Li, Yidong Yin, Haige Hou, Naiying Fan, Fulong Yuan, Yanmei Shi, Qingling Meng. 2010. “Preparation and characterization of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation". Solid State Communications 150: 585-58.
  • [31] Aguirre Mauricio, Gutiérrez Adamo, Giraldo Oscar. “Simple Route for the Synthesis of Copper Hydroxy Salts". 2011. J. Braz. Chem. Soc. 22: 546-551.
  • [32] Henrist C, Traina K, Hubert C, Toussaint G, Rulmont A, Cloots R. “Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis". 2003. J. Cryst. Growth. 254: 176-187.
  • [33] Khan M. A, ullah M, Iqbal T, Mahmood H, Khan A, Shafique M, Majid A. , Ahmed A, Khan N A. 2015. “Surfactant Assisted Synthesis of Cuprous Oxide (Cu2O) nanoparticles via Solvothermal Process". Nanoscience and Nanotechnology Research 3(1): 16-22.
  • [34] Varughese G., Rini V., Suraj S.P., usha K.T. 2014. “Characterisation and optical studies of copper oxide nanostructures doped with lanthanum ions". Advances In Materials Science 14(4): 49-60.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. Praca wspólfinansowana przez Ministerstwo Nauki i Szkolnictwa Wyższego.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba1c1f1d-212e-4185-be0a-5ffe1bcd17ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.