Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We use a variation on Mason’s α-function as a pre-dimension function to construct a not one-based ω-stable plane P (i.e. a simple rank 3 matroid) which does not admit an algebraic representation (in the sense of matroid theory) over any field. Furthermore, we characterize forking in T h(P), we prove that algebraic closure and intrinsic closure coincide in T h(P), and we show that T h(P) fails weak elimination of imaginaries, and has Morley rank ω.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
87--111
Opis fizyczny
Bibliogr. 2 poz., rys.
Twórcy
autor
- Department of Mathematics “Giuseppe Peano” University of Torino Via Carlo Alberto 10, 10123, Italy
Bibliografia
- [1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin Heidelberg, 1979.
- [2] J. Baldwin, G. Paolini, Strongly Minimal Steiner Systems I: Existence, To appear in J. Symb. Logic, available at: https://arxiv.org/abs/1903.03541.
- [3] J. Baldwin, Strongly Minimal Steiner Systems II: Coordinatization and Strongly Minimal Quasigroups, In preparation.
- [4] J. Baldwin, Niandong Shi, Stable Generic Structures, Ann. Pure Appl. Logic 79:1 (1996), 1–35.
- [5] H.H. Crapo, and G. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, M.I.T. Press, Cambridge, Mass, 1970.
- [6] H. H. Crapo, Single-Element Extensions of Matroids, J. Res. Nat. Bur. Standards Sect. B, v. 69B (1965), 55–65. MR 32 # 7461.
- [7] D. Evans, Matroid Theory and Hrushovski’s Predimension Construction, available at: https://arxiv.org/abs/1105.3822.
- [8] D. Evans, An Introduction to Ampleness, available at: http://wwwf.imperial.ac.uk/~dmevans/OxfordPGMT.pdf.
- [9] A. Hasson, O. Mermelstein, Reducts of Hrushovski’s Constructions of a Higher Geometrical Arity, Fund. Math., to appear.
- [10] Ehud Hrushovski, A New Strongly Minimal Set, Ann. Pure Appl. Logic 62 (1993), no. 2, 147-166.
- [11] T. Hyttinen, G. Paolini, Beyond Abstract Elementary Classes: On The Model Theory of Geometric Lattices, Ann. Pure Appl. Logic 169:2 (2018), 117–145.
- [12] J.P.S. Kung, A Source Book in Matroid Theory, Birkh¨auser Boston, Inc., Boston, MA, 1986.
- [13] B. Lindstr¨om, A Class of non-Algebraic Matroids of Rank Three, Geom. Dedicata 23:3 (1987), 255–258.
- [14] B. Lindstr¨om, A Desarguesian Theorem for Algebraic Combinatorial Geometries, Combinatorica 5:3 (1985), 237–239.
- [15] D. Marker, Model Theory: An Introduction, Graduate Texts in Mathematics, 217, Springer-Verlag, New York, 2002.
- [16] J.H. Mason, On a Class of Matroids Arising from Paths in Graphs, Proc. London Math. Soc. (3) 25 (1972), 55–74.
- [17] O. Mermelstein, An Ab Initio Construction of a Geometry, available at: https: //arxiv.org/abs/1709.07353.
- [18] G. Paolini, A Universal Homogeneous Simple Matroid of Rank 3, Bol. Mat. (UNAL, Colombia) 25:1 (2018), 39–48.
- [19] K. Tent, M. Ziegler, A Course in Model Theory, Lecture Notes in Logic, Cambridge University Press, 2012.
- [20] D.J.A. Welsh, Matroid Theory, L. M. S. Monographs, No. 8. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976.
- [21] N. White (ed.), Combinatorial Geometries, Encyclopedia of Mathematics and its Applications, 29. Cambridge University Press, Cambridge, 1987.
- [22] M. Ziegler, An Exposition of Hrushovski’s New Strongly Minimal Set, Ann. Pure Appl. Logic 164:12 (2013), 1507–1519.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba195140-959a-47cb-beb3-069aa7d67a50