PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A - 5 dBm 400MHz OOK Transmitter for Wireless Medical Application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A 400 MHz high efficiency transmitter for wireless medical application is presented in this paper. Transmitter architecture with high-energy efficiencies is proposed to achieve high data rate with low power consumption. In the on-off keying transmitters, the oscillator and power amplifier are turned off when the transmitter sends 0 data. The proposed class-e power amplifier has high efficiency for low level output power. The proposed on-off keying transmitter consumes 1.52 mw at-5 dBm output by 40 Mbps data rate and energy consumption 38 pJ/bit. The proposed transmitter has been designed in 0.18μm CMOS technology.
Słowa kluczowe
Twórcy
autor
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Iran
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Iran
autor
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Iran
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Iran
autor
  • Faculty of Electrical and Computer Engineering, University of Tabriz, Iran
Bibliografia
  • [1] A. W. Wong, D. McDonagh, G. Kathiresan, O. Omeni, O. El-Jamaly, T. K. Chan, P. Paddan, and A. Burdett, “A 1 V, micropower system-on chip for vital-sign monitoring in wireless body sensor networks”, in Proc. IEEE Int. Solid-State Circuits Conf. San Francisco, 2008, pp. 138–139.
  • [2] Y. J. Yang, Y. J. Huang, H. H. Liao, T.Wang, P. L. Huang, C.-W. Lin, Y.-H.Wang, and S. Shi Lu, “A release-on-demand wireless CMOS drug delivery soc based on electro thermal activation technique”, in Proc. IEEE Int. Solid-State Circuits Conf. San Francisco, 2009, pp. 288-289.
  • [3] M. Vidojkovic et al., “A 2.4GHz ULP OOK Single-Chip Transceiver for Healthcare Applications”, in Proc. IEEE Int. Solid-State Circuits Conf. San Francisco, 2011, pp. 458-460.
  • [4] Brian P. Otis, Y.H. Chee, and Jan M. Rabaey, “A 400μW-RX 1.6mW-TX Super-Regenerative Transceiver for Wireless Sensor Networks”, in proc IEEE Int. Solid-State Circuits Conf, San Francisco, 2005, vol. 1, pp. 396–606.
  • [5] J.-Y. Chen, M. Flynn, and J. Hayes, “A fully integrated auto-calibrated super-regenerative receiver in 0.13 mCMOS,”IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1976-1985, Sep. 2007.
  • [6] J. Bohorquez, A. Chandrakasan, and J. Dawson, “A 350 WCMOS MSK transmitter and 400 W OOK super-regenerative receiver for medical implant communications,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1248–1259, Apr. 2009.
  • [7] D. Daly and A. Chandrakasan, “An energy-efficient OOK transceiver for wireless sensor networks,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1003–1011, May 2007.
  • [8] N. O. Sokal, “Class-E RF Power Amplifiers”, QEX, no. 204, pp. 9-20. Jan/Feb. 2001.
  • [9] M. Acar, A. J. Annema, B. Nauta, “Analytical design equations for class-E power amplifiers”, IEEE Trans Circuits Syst. vol. 54, no. 12, pp: 2706–2717, Dec. 2007.
  • [10] S. Jin, B. Park, K. Moon, M. Kwon, and B. Kim, “Linearization of CMOS Cascode Power Amplifiers Through Adaptive Bias Control”, Microwave Theory and Techniques, IEEE Tran. on , vol. 61, no. 12, pp. 4534, 4543, Dec. 2013.
  • [11] M. Apostolidou, M. P. V. Heijden, D. M. W. Leenaerts, J. Sonsky, A. Heringa, I. Volokhine, “A 65 nm CMOS 30 dBm class-E RF power amplifier with 60% PAE and 40% PAE at 16 dB back-off, IEEE J. Solid-State Circuits, vol. 44, pp. 1372–1379, May 2009.
  • [12] R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, “A 30.5 dBm 48% PAE CMOS class-E PA with integrated balun for RF applications”, IEEE J. Solid-State Circuits, vol. 43, pp. 1755–1762, Agu. 2008.
  • [13] K. L. R. Mertens, M. S. J. Steyaert, “A 700-MHz 1-W fully differential CMOS class-E power amplifier”, IEEE J. Solid-State Circuits, vol. 37, pp. 137–141, Feb. 2002.
  • [14] K. C. Tsai, P. R. Gray, “A 1.9-GHz 1-W CMOS class-E power amplifier for wireless communications”, IEEE J. Solid-State Circuits, vol. 34, pp. 962–970, Jul.1999.
  • [15] M. Yousefi, Z. D. Koozehkanani, J. Sobhi and H. Jangi, “A 1.8 GHz Power Amplifier Class-E with Good Average Power Added Efficiency”, Circuits and Systems, vol. 4, pp. 504-509, Dec. 2013.
  • [16] P. Reynaert and M. Steyaert, RF Power Amplifiers for Mobile Communications. New York, Springer, 2006.
  • [17] G. Retz, et al. “A highly integrated low-power 2.4 GHz transceiver using a direct-conversion diversity receiver in 0.18 m CMOS for IEEE802.15.4 WPAN”, in: Proc. IEEE ISSCC. San Francisco, CA. 2009, pp. 414-415, 415a.
  • [18] Y. S. Eo, H. J. Yu, S. S. Song, Y. Y. Ko, J. Y. Kim, “A fully integrated 2.4 GHz low IF CMOS transceiver for 802.15.4 ZigBee applications”, In. Proc. 4T Solid-State Circuits Conference 4T IEEE ASSCC07, Jeju, 2007, pp. 164–167.
  • [19] J. Bae, L. Yan, H. Yoo, “A Low Energy Injection-Locked FSK Transceiver With Frequency-to-Amplitude Conversion for Body Sensor Application”, IEEE J. Solid-State Circuits, vol. 46, pp. 928-937, 2011.
  • [20] B. Cook, A. Berny, A. Molnar, S. Lanzisera, K. Pister, “Low-power 2.4 GHz transceiver with passive RX front end and 400 mV supply”, IEEE J Solid-State Circuits; vol. 41, pp. 2757–2766, 2006.
  • [21] J. Bae, N. Cho, H. J. Yoo, “A 490 mW fully MICS compatible FSK transceiver for implantable devices”, In. Proc. Symposium on VLSI Circuits, 2009, pp. 36–37.
  • [22] J. Tan, C. H. Heng, Y. Lian, “Design of Efficient Class-E Power Amplifiers for Short-Distance Communications”, IEEE Tran. ON circuit and systems, vol. 59, pp. 2210-2220, 2012.
  • [23] IEEE P802.15.6/ IEEE standard, May 2010.
  • [24] D. Sira, P. Thomsen, and T. Larsena “Output Power Control in Class-E Power Amplifiers”, IEEE Microwave And Wireless Components Letters, vol. 20, no. 4, pp. 232–234, Apr 2010.
  • [25] R. Brama,. L. Larcher, A. Mazzanti, F. Svelto, “A 1.7-GHz 31dBm differential CMOS Class-E Power Amplifier with 58% PAE”, in Proc. Custom Integrated Circuits Conf. 2007, San Jose, pp. 551-554.
  • [26] J. Cai and Z. Li, “A 1-V, 800-MHz CMOS class-E power amplifier with power Wireless Communications & Signal Processing (WCSP)”, in Proc. 2013 Int. Conf., 2013, pp. 1-4.
  • [27] A. O. Ameen, and K. M. Sharaf, “A 1.75 GHz CMOS Class E RF Power Amplifier and oscillator”, Microelectronics 2007 ICM 2007 Int. Conf., 2007, pp. 235–238.
  • [28] K. L. R. Mertens, and M. S. J. Steyaert, “A 700-MHz 1-W fully differential CMOS class-E power amplifier”, IEEE J. of Solid-State Circuits, vol. 37, pp. 137-141.
  • [29] Q. Zhang, P. Feng, Z. Geng, X. Yan, and N. Wu, “A 2.4-GHz Energy-Efficient Transmitter for Wireless Medical Applications”, Trans. on Biomedical Circuits and Systems IEEE, vol. 5, pp. 39–47, Feb 2011.
  • [30] X. Huang, E. Harpe, P. ; X. Wang, and G. Dolmans, “A 0dBm 10Mbps 2.4GHz ultra-low power ASK/OOK transmitter with digital pulse-shaping”, Radio Frequency Integrated Circuits Symposium, Anaheim, CA, 2010, pp. 263–266.
  • [31] M. R. N-Ahmadi, at et, “A 2mW 400MHz RF transceiver SoC in 0.18 μm CMOS technology for wireless medical applications”, Radio Frequency Integrated Circuits Sym., 2008, pp. 285–288.
  • [32] M. M. El-Desouki, M. J. Deen, M. Haddara, and M. Yaser, “A low-power CMOS class-E power amplifier for biotelemetry applications”, in Proc. Microwave Conference, 2005, European, vol. 1.
  • [33] T. Sowlati, and D.M. W. Leenaerts, “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier”, Solid-State Circuits, IEEE J. of RFIC Virtual J. IEEE, vol. 38, pp. 1318–1324, Aug 2003.
  • [34] D. Sira, P. Thomsen and T. Larsen, “A cascode modulated class-E power amplifier for wireless communications”, Microelectronics J., vol. 42, pp 141–147, Jan 2011.
  • [35] A. Shirvani, D. K. Su, and B. A. Wooley, “A CMOS RF power amplifier with parallel amplification for efficient power control”, IEEE J. of Solid-State Circuits, vol. 37, pp. 684–693, Jun 2002.
  • [36] D. C. Daly and A. P. Chandrakasan, “An energy-efficient OOK transceiver for wireless sensor networks,” IEEE J. Solid-State Circuits, vol. 42, pp. 1003–1011, May 2007.
  • [37] Ben W. Cook et, ”An Ultra low Power 2.4GHz RF Transceiver for Wireless Sensor Network in 0.13 μm CMOS with 400mw supply and an Integrated Passive RX front-End,” in IEEE ISSCC dig. Tech. Papers, pp. 1460-1469, Feb. 2006.
  • [38] M. Kumarasamy Raja and Yong Ping Xu, ”A 52 pJ/bit OOK Transmitter with adaptable data rate,” in Proc Solid-State Circuits Conf., 2008. IEEE Asian, Fukuoka, Japan 3-5 Nov 2008, pp. 341–344.
  • [39] Z. Qi, K. Xiaofei and W. Nanjian, “An ultra-low-power RF transceiver for WBANs in medical applications,” Journal of Semiconductors, vol. 32, June 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba0f11c9-4ca3-4fdf-8cc9-edbe022528f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.