PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of asymptotic functions for determining empirical values of CN parameter in selected catchments of variable land cover

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to assess the applicability of asymptotic functions for determining the value of CN parameter as a function of precipitation depth in mountain and upland catchments. The analyses were carried out in two catchments: the Rudawa, left tributary of the Vistula, and the Kamienica, right tributary of the Dunajec. The input material included data on precipitation and flows for a multi-year period 1980-2012, obtained from IMGW PIB in Warsaw. Two models were used to determine empirical values of CNobs parameter as a function of precipitation depth: standard Hawkins model and 2-CN model allowing for a heterogeneous nature of a catchment area. The study analyses confirmed that asymptotic functions properly described P-CNobs relationship for the entire range of precipitation variability. In the case of high rainfalls, CNobs remained above or below the commonly accepted average antecedent moisture conditions AMCII. The study calculations indicated that the runoff amount calculated according to the original SCS-CN method might be underestimated, and this could adversely affect the values of design flows required for the design of hydraulic engineering projects. In catchments with heterogeneous land cover, the results of CNobs were more accurate when 2-CN model was used instead of the standard Hawkins model. 2-CN model is more precise in accounting for differences in runoff formation depending on retention capacity of the substrate. It was also demonstrated that the commonly accepted initial abstraction coefficient λ = 0.20 yielded too big initial loss of precipitation in the analyzed catchments and, therefore, the computed direct runoff was underestimated. The best results were obtained for λ = 0.05.
Słowa kluczowe
Wydawca
Rocznik
Strony
111--120
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • University of Agriculture in Kraków, Department of Sanitary Engineering and Water Management
autor
  • University of Agriculture in Kraków, Department of Sanitary Engineering and Water Management
autor
  • DHI Poland, o/Kraków
Bibliografia
  • [1] AJMAL M., WASEEM M., WI S., KIM T.-W., Evolution of a parsimonious rainfall-runoff model using soil moisture proxies. J. of Hydrology, 2015, 530, 623-633.
  • [2] BALTAS E.A., DERVOS N.A., MIMIKOU M.A., Technical Note: Determination of the SCS initial abstraction ratio in an experimental watershed in Greece, Hydrol. Earth Syst. Sci., 2007, 11, 1825-1829.
  • [3] BANASIK K., WOODWARD D.E., Empirical determination of runoff Curve Number for a small agriculture catchment in Poland, Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, 27 June-1 July 2010.
  • [4] BANASIK K., RUTKOWSKA A., KOHNOVÁ S., Retention and Curve Number Variability in a Small Agricultural Catchment: The Probabilistic Approach, Water, 2014a, 6, 1118-1133.
  • [5] BANASIK K., KRAJEWSKI A., SIKORSKA A., HEJDUK L., Curve Number estimation for a small urban catchment from recorded rainfall-runoff events, Archives of Environmental Protection, 2014b, 40(3), 75-86.
  • [6] CHAUHAN M.S., KUMAR V., RAHUL A.K., Modelling and quantifying water use efficiency for irrigation project and water supply at large scale, Int. J. Adv. Sci. Tech. Res., 2013, 3, 617-639.
  • [7] CHEN C.L., An evaluation of the mathematics and physical significance of the Soil Conservation Service curve number procedure for estimating runoff volume, Proc., Int. Symp. on Rainfall-Runoff Modeling, Water Resources Publ., Littleton, Colo., 1982, 387-418.
  • [8] DESHMUKH D.S., CHAUBE U.C., HAILU A.E., GUDETA D.A., KASSA M.T., Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope, J. Hydrol., 2013, 492, 89-101.
  • [9] DE PAOLA F., RANUCCI A., FEO A., Antecedent moisture conditio (SCS) frequency assessment: A case study in southern Italy, Irrig. Drain., 2013, 62, 61-71.
  • [10] EPPS T.H., HITCHCOCK D.R., JAYAKARAN A.D., LOFLIN D.R., WILLIAMS T.M, AMATYA D.M., Curve Number derivation for watersheds draining two headwater streams in lower coastal plain South Carolina, USA. J. of American Water Resources Association (JAWRA), 2013, 49(6), 1284-1295.
  • [11] HAWKINS R.H., Asymptotic determination of Curve Numbers from data, Journal of Irrigation and Drainage Division, 1993, 119(2), 334-345.
  • [12] HAWKINS R.H., JIANG R., WOODWARD D.E., HJELMFELT A.T., VAN MULLEM J.A., QUAN Q.D., Runoff Curve Number Method: Examination of the Initial Abstraction Ratio, Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada, U.S. Geological Survey, Lakewood, Colorado, ASCE Publications 2002.
  • [13] KING K.W., BALOGH J.C., Curve numbers for golf course watersheds, American Society of Agricultural and Biological Engineers, 2008, 51(3), 987-996.
  • [14] KOWALIK T., WAŁĘGA A., Estimation of CN Parameter for Small Agricultural Watersheds Using Asymptotic Functions, Water, 2015, 7(3), 939-955.
  • [15] KRZANOWSKI S., MILER A.T., WALEGA A., The effect of moisture conditions on estimation of the CN parameter value in the mountain catchment, Infrastruct. Ecol. Rural Areas, 2013, 3, 105-117, (in Polish).
  • [16] MALONE R.W., YAGOW G., BAFFAUT C., GITAU M.W., QI Z., AMATYA D.M., PARAJULI P.B., BONTA J.V., GREEN T.R., Parameterization guidelines and considerations for hydrologic models, Transaction of the ASABE, 2015, 58(6), 1681-1703.
  • [17] MICHEL C., VAZKEN A., PERRIN C., Soil conservation service curve number method: how to mend a wrong soil moisture accounting procedure, Journal of Water Resources Research, 2005, 41, 1-6.
  • [18] MISHRA S.K., SINGH V.P., SCS-CN-based hydrologic simulation package, [in:] V.P. Singh, D.K. Frevert (Eds.), Mathematical Models of Small Watershed Hydrology and Applications, Water Resources Publs., LLC, Highlands Ranch, 2002, 391-464.
  • [19] MISHRA S.K., SINGH V.P., Long-term hydrological simulation based on the Soil Conservation Service curve number, J. Hydrol. Process., 2004, 18, 1291-1313.
  • [20] NASH J.E., SUTCLIFFE J.V., River flow forecasting through conceptual models. Part I – a discussion of principles, J. of Hydrol., 1970, 10(3), 282-290.
  • [21] PONCE V.M., Engineering Hydrology: Principles and Practices, Prentice Hall, Upper Saddle River, New Jersey, 1989.
  • [22] PONCE V.M., HAWKINS R.H., Runoff curve number: Has it reached maturity? J. Hydrol. Eng., 1996, 1(1), 11-19.
  • [23] RALLISON R.E., MILLER N., Past, present, and future SCS runoff procedure. In: Rainfall-runoff relationship, Proc. of the International Symphosium on Rainfall-Runoff Modelling, Missisipi, Missisipi State University, 18-21 May 1981, 353-364.
  • [24] RITTER A., MUÑOZ-CARPENA R., Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments, J. of Hydrol., 2013, 480, 33-45.
  • [25] RUTKOWSKA A., KOHNOVÁ S., BANASIK K., SZOLGAY J., KARABOWÁ B., Probabilistic properties of a curve number: A case study for small Polish and Slovak Carpathian Basins, Journal of Mountain Science, 2015, 12(3), 533-548.
  • [26] SAHU R.K., MISHRA S.K., ELDHO T.I., Performance evaluation of modified versions of SCS curve number method for two watersheds of Maharashtra, India, ISH J. Hydraul. Eng., 2012, 18(1), 27-36.
  • [27] SOULIS K.X., VALIANTZAS J.D., SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach, Hydrology and Earth System Sciences, 2012, 16, 1001-101.
  • [28] SOULIS K.X., VALIANTZAS J.D., Identification of the SCS-CN Parameter Spatial Distribution Using Rainfall-Runoff Data in Heterogeneous Watersheds, Water Resour Manage, 2012, 27, 1737-1749.
  • [29] USDA Natural Resources Conservation Service. Hydrology, [in:] National Engineering Handbook; USDA Soil Conservation Service: Washington, DC, USA, 2004, Chapter 9.
  • [30] WAŁĘGA A., RUTKOWSKA A., Usefulness of the Modified NRCS-CN Method for the Assessment of Direct Runoff in a Mountain Catchment, Acta Geophysica, 2015, 63(5), 1423-1446.
  • [31] WAŁĘGA A., MICHALEC B., CUPAK A., GRZEBINOGA M., Comparison of SCS-CN Determination Methodologies in a Heterogeneous Catchment, Journal of Mountain Science, 2015, 12(5), 1084-1094.
  • [32] WOODWARD D.E., HAWKINS R.H., JIANG R., HJELMFELT A.T. JR., VAN MULLEM J.A., QUAN D.Q., Runoff Curve Number Method: Examination of the Initial Abstraction Ratio, World Water and Environ. Resour. Congress and Related Symposia, EWRI, ASCE, 23-26 June, 2003, Philadelphia, Pennsylvania, USA.
  • [33] VEN TE CHOW, MAIDMENT D.K., MAYS L.W., Applied of Hydrology, McGraw Hill Book Company, New York 1988.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba0d99f7-8383-442f-b86d-8e074e29e154
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.