PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effect of liquid grinding aids on the dry fine grinding of muscovite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the production of a micronized muscovite to a target product size of d50~15 μm with a minimum energy consumption to suit the product requirements of the paint industry by a dry grinding process in a laboratory-scale vertical stirred ball mill. A series of batch dry grinding tests were conducted without and with two commonly used industrial liquid grinding aids, ethylene glycol (EG, C2H6O2) and triethanolamine (TEA, C6H15NO3). The results were evaluated based on particle size distribution (PSD), specific energy consumption, span value, and aspect ratio. The results showed that using liquid grinding aids resulted in a finer PSD, lower specific energy consumption, a narrower size distribution, lower span values, and a higher aspect ratio, which meant better delamination and improved grinding efficiency to that of no grinding aid. The interaction between grinding aids and ground muscovite surfaces was investigated by Fourier Transform Infrared Spectroscopy (FTIR). FTIR measurements revealed that EG and TEA were physically adsorbed on muscovite surfaces. Scanning Electron Microscopy (SEM) was also employed to determine differences between ground muscovite surfaces with and without grinding aids. SEM images indicated that grinding aids could prevent the agglomeration of ground muscovite particles while improving delamination. Adding grinding aids led to a decrease in muscovite agglomeration and an improvement in lamination owing to the adsorption of grinding aids on the particle surfaces.
Słowa kluczowe
Rocznik
Strony
art. no. 165854
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
  • Nigde Omer Halisdemir University, Faculty of Engineering, Department of Mining Engineering, Nigde, Turkey
  • Eskisehir Osmangazi University, Faculty of Engineering and Architecture, Department of Mining Engineering, Eskisehir, Turkey
  • Eskisehir Osmangazi University, Faculty of Engineering and Architecture, Department of Mining Engineering, Eskisehir, Turkey
autor
  • Eskisehir Osmangazi University, Faculty of Engineering and Architecture, Department of Mining Engineering, Eskisehir, Turkey
Bibliografia
  • ALTUN, O., BENZER, H., ENDERLE, U., 2013. Effects of operating parameters on the efficiency of dry stirred milling. Miner. Eng. 43-44, 58-66.
  • ALTUN, O., BENZER, H., TOPRAK, A., ENDERLE, U., 2015. Utilization of grinding aids in dry horizontal stirred milling. Powder Technol. 286, 610-615.
  • BALARD, H., AOUADJ, O., PAPIRER, E., 1997. Monitoring, by Inverse Gas Chromatography, of the Variation of the Surface Energetic Heterogeneity of Ground Muscovite Samples. Langmuir 13(5), 1251-1255.
  • BAUDET, G., BIZI, M., RONA, J.P., 1993. Estimation of The Average Aspect Ratio of Lamellae-Shaped Particles by Laser Diffractometry. Particulate Science and Technology 11, 73-96.
  • BILIR, K., 2022. Quantifying the effect of the grinding aids in a batch stirred mill by a modelling approach. Bilimsel Madencilik Dergisi 61, 41-48.
  • BILIR, K., HALIL, İ., 2022. Analysis of The Factors Affecting The Grindability of K-Feldspar by The Full Factorial Design. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 30, 152-158.
  • BLOTT, S.J., PYE, K., 2006. Particle size distribution analysis of sand-sized particles by laser diffraction: an experimental investigation of instrument sensitivity and the effects of particle shape. Sedimentology 53, 671-685.
  • BOWEN, P., 2002. Particle Size Distribution Measurement from Millimeters to Nanometers and from Rods to Platelets. J. Dispersion Sci. Technol. 23, 631-662.
  • CALIFICE, A., MICHEL, F., DISLAIRE, G., PIRARD, E., 2013. Influence of particle shape on size distribution measurements by 3D and 2D image analyses and laser diffraction. Powder Technol. 237, 67-75.
  • CAYIRLI, S., 2014. Investigation of the Effects of Grinding Parameters on Mica Grinding in a Stirred Ball Mill. Ph. D. Thesis (In Turkish), Eskişehir Osmangazi University.
  • CAYIRLI, S., 2022. Analysis of grinding aid performance effects on dry fine milling of calcite. Adv. Powder Technol. 33.
  • CAYIRLI, S., GOKCEN, H.S., 2021. The Influence of Stirred Mill Orientation on Calcite Grinding. Mining, Metallurgy & Exploration 38, 1551-1560.
  • CHEVALIER, D.M., 2008. Effect of microwave irradiation on aspect ratio of treated mica. Master of Applied Science, Dalhousie University.
  • CHIPAKWE, V., SEMSARI, P., KARLKVIST, T., ROSENKRANZ, J., CHELGANI, S.C., 2020. A critical review on the mechanisms of chemical additives used in grinding and their effects on the downstream processes. Journal of Materials Research and Technology 9, 8148-8162.
  • CHOI, H., LEE, W., KIM, D.U., KUMAR, S., KIM, S.S., CHUNG, H.S., KIM, J.H., AHN, Y.C., 2010. Effect of grinding aids on the grinding energy consumed during grinding of calcite in a stirred ball mill. Miner. Eng. 23, 54-57.
  • DE RIDDER, F., DERIEMAEKER, L., COPPENS, P., FINSY, R., 2000. Shape and Size Determination by Laser Diffraction:Feasibility of Data Analysis by Physical Modeling. Particle & Particle Systems Characterization 17, 195-205.
  • EL-SHALL, H., SOMASUNDARAN, P., 1984a. Mechanisms of grinding modification by chemical additives: organic reagents. Powder Technol. 38, 267-273.
  • EL-SHALL, H., SOMASUNDARAN, P., 1984b. Physico-chemical aspects of grinding: a review of use of additives. Powder Technol. 38, 275-293.
  • ENGELSEN, C., 2008. Quality improvers in cement making–State of the art. SINTEF Building and Infrastructure, COIN Project Report 2, 978-982.
  • ERDOĞAN, S.T., NIE, X., STUTZMAN, P.E., GARBOCZI, E.J., 2010. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement. Cem. Concr. Res. 40, 731-739.
  • FORSSBERG, E., WANG, Y., PERSSON, H., 1995. Dry, Fine Grinding of Dolomit with the Sala Agitated Mill SAM 7.5-Effects of Grinding Media and Grinding Additive. Aufbereitungs Technik 36, 211-216.
  • FUERSTENAU, D.W., 1995. Grinding Aids. KONA Powder and Particle Journal 13, 5-18.
  • GANTENBEIN, D., SCHOELKOPF, J., MATTHEWS, G.P., GANE, P.A.C., 2011. Determining the size distribution-defined aspect ratio of platy particles. Applied Clay Science 53, 544-552.
  • GAO, M.W., FORSSBERG, E., 1995. Prediction of Product Size Distributions for a Stirred Ball Mill. Powder Technol. 84, 101-106.
  • GOKCEN, H.S., CAYIRLI, S., UCBAS, Y., KAYACI, K., 2015. The effect of grinding aids on dry micro fine grinding of feldspar. Int. J. Miner. Process. 136, 42-44.
  • HANNA, K.M., EL GAMAL, A., 1977. The effect of dispersing agents on fine grinding of limestone. Powder Technol. 17, 19-25.
  • HASEGAWA, M., KIMATA, M., YAGUCHI, M., 2006. Effect and Behavior of Liquid Additive Molecules in Dry Ultrafine Grinding of Limestone [Translated]†. KONA Powder and Particle Journal 24, 213-221.
  • HOGG, R., 2015. A Spheroid Model for the Role of Shape in Particle Size Analysis. KONA Powder and Particle Journal 32, 227-235.
  • JIMENEZ, J.L.S., 1981. A detailed study on stirred ball mill grinding. Doctor of Philosohy, The University of Utah.
  • JOLICOEUR, J., MORASSE, S., SHARMAN, J., TAGNIT-HAMOU, A., SLIM, F., PAGE, M., 2007. Polyol-type compounds as clinker grinding aids: Influence of powder fluidity and on cement hydration. 12th International Congress on the Chemistry of Cement1-6.
  • KARBSTEIN, H., MULLER, F., POLKE, R., 1995. Producing suspensions with steep particle size distributions in fines ranges. Aufbereitungs-Technik 36, 464-473.
  • KATSIOTI, M., TSAKIRIDIS, P.E., GIANNATOS, P., TSIBOUKI, Z., MARINOS, J., 2009. Characterization of various cement grinding aids and their impact on grindability and cement performance. Construction and Building Materials 23, 1954-1959.
  • KLIMPEL, R., MANFROY, W., 1977. Development of chemical grinding aids and their effect on selection for Breakage and breakage distribution parameters in the wet-grinding of ores. XII Int. Min. Proc. Cong., Sao Paulo, Brazil.
  • KOBYA, V., KAYA, Y., MARDANI-AGHABAGLOU, A., 2022. Effect of amine and glycol-based grinding aids utilization rate on grinding efficiency and rheological properties of cementitious systems. Journal of Building Engineering 47.
  • KWADE, A., 1999. Wet comminution in stirred media mills - research and its practical application. Powder Technol. 105, 14-20.
  • LI, M., WILKINSON, D., PATCHIGOLLA, K., 2005. Comparison of Particle Size Distributions Measured Using Different Techniques. Particulate Science and Technology 23, 265-284.
  • MA, Z., MERKUS, H.G., DE SMET, J.G.A.E., HEFFELS, C., SCARLETT, B., 2000. New developments in particle characterization by laser diffraction: size and shape. Powder Technol. 111, 66-78.
  • MA, Z., MERKUS, H.G., SCARLETT, B., 2001. Extending laser diffraction for particle shape characterization: technical aspects and application. , , . Powder Technol. 118(1-2), 180-187.
  • MANSUR, H.S., OREFICE, R.L., MANSUR, A.A.P., 2004. Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45, 7193-7202.
  • NAITO, M., HAYAKAWA, O., NAKAHIRA, K., MORI, H., TSUBAKI, J., 1998. Effect of particle shape on the particle size distribution measured with commercial equipment. Powder Technol. 100(1), 52-60.
  • NESSET, J., RADZISZEWSKI, P., HARDIE, C., LEROUX, D., 2006. Assessing the performance and efficiency of fine grinding technologies. 38th CMP, Canada, Ottawa283-310.
  • ORUMWENSE, O.A., FORSSBERG, E., 1990. Ultrafine grinding of muscovite in close packed media mill. Scand. J. Metall. 19, 201-206.
  • PAPIRER, E., ECKHARDT, A., MULLER, F., YVON, J., 1990. Grinding of muscovite: influence of the grinding medium. Journal of materials science 25, 5109-5117.
  • PARAMASIVAM, R., VEDARAMAN, R., 1992. Effects of the physical properties of liquid additives on dry grinding. Powder Technol. 70, 43-50.
  • PRZIWARA, P., BREITUNG-FAES, S., KWADE, A., 2018a. Impact of grinding aids on dry grinding performance, bulk properties and surface energy. Adv. Powder Technol. 29, 416-425.
  • PRZIWARA, P., BREITUNG-FAES, S., KWADE, A., 2018b. Impact of the powder flow behavior on continuous fine grinding in dry operated stirred media mills. Miner. Eng. 128, 215-223.
  • PRZIWARA, P., BREITUNG-FAES, S., KWADE, A., 2019. Comparative study of the grinding aid effects for dry fine grinding of different materials. Miner. Eng. 144.
  • PRZIWARA, P., HAMILTON, L.D., BREITUNG-FAES, S., KWADE, A., 2018c. Impact of grinding aids and process parameters on dry stirred media milling. Powder Technol. 335, 114-123.
  • PRZIWARA, P., KWADE, A., 2020. Grinding aids for dry fine grinding processes – Part I: Mechanism of action and lab-scale grinding. Powder Technol. 375, 146-160.
  • RÁCZ, Á., CSŐKE, B., 2016. Application of the product related stress model for product dispersity control in dry stirred media milling. Int. J. Miner. Process. 157, 28-35.
  • RAO, R.B., 2003. Effect of additives on ultra fine dry grinding of calcite. Powder Handling and Processing 15 (3), 178-183.
  • REHBINDER, P.A., 1931. Hardness reduction through adsorption of surface active agents. Phys 72, 191-205.
  • ROSE, H.E., SULLIVAN, R.M.E., 1958. Ball tube and rod mills. Chemical Publishing.
  • SAVAGE, K.L., AUSTIN, L.G., SUN, S.C., 1974. Effect of the Environment During the Ultrafine Comminution of Silicon Carbide in a Laboratory Vibratory Mill. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers 256, 89.
  • TINKE, A.P., CARNICER, A., GOVOREANU, R., SCHELTJENS, G., LAUWERYSEN, L., MERTENS, N., VANHOUTTE, K., BREWSTER, M.E., 2008. Particle shape and orientation in laser diffraction and static image analysis size distribution analysis of micrometer sized rectangular particles. Powder Technol. 186, 154-167.
  • TOPRAK, N.A., ALTUN, O., AYDOGAN, N., BENZER, H., 2014. The influences and selection of grinding chemicals in cement grinding circuits. Construction and Building Materials 68, 199-205.
  • TOPRAK, N.A., BENZER, A.H., 2019. Effects of grinding aids on model parameters of a cement ball mill and an air classifier. Powder Technol. 344, 706-718.
  • TOPRAK, N.A., BENZER, A.H., KARAHAN, C.E., ZENCIRCI, E.S., 2020. Effects of grinding aid dosage on circuit performance and cement fineness. Construction and Building Materials 265.
  • WANG, L., SUN, W., HU, Y.-H., XU, L.-H., 2014. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite – Quartz flotation system. Miner. Eng. 64, 44-50.
  • WANG, Y., FORSSBERG, E., 2000. Product size distribution in stirred media mills. Minerals Engineering 13(4), 459-465.
  • WANG, Y., FORSSBERG, E., 2007. Enhancement of energy efficiency for mechanical production of fine and ultra-fine particles in comminution. China Particuology 5, 193-201.
  • WANG, Y., WANG, Y., ZHANG, Z., 2009. Effect of Different Organic Group on Cement Grinding Process. Bull. Chin. Ceram. Soc 3, 575-579.
  • WESTWOOD, A.R.C., GOLDHEIM, D.L., 1968. Occurrence and mechanism of Rebinder Effects in CaF2. J. Appl. Phys. 39, 3401-3405.
  • WILLETT, J.C., 2012. Mica. Minerals Yearbook, USGS.
  • XU, R., DI GUIDA, O.A., 2003. Comparison of sizing small particles using different technologies. Powder Technol. 132, 145-153.
  • ZHANG, T.L., GAO, J.M., HU, J.C., 2015. Preparation of polymer-based cement grinding aid and their performance on grindability. Construction and Building Materials 75, 163-168.
  • ZHAO, J.H., WANG, D.M., WANG, X.G., LIAO, S.C., 2015. Characteristics and Mechanism of Modified Triethanolamine as Cement Grinding Aids. Journal of Wuhan University of Technology-Materials Science Edition 30, 134-141.
  • ZHENG, J., HARRIS, C.C., SOMASUNDARAN, P., 1996. A study on grinding and energy input in stirred media mills. Powder Technol. 86, 171-178.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba0b8a03-b1d0-4cab-8974-ee9def6187b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.