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Abstract— Event correlation and root cause analysis play
a fundamental role in the process of troubleshooting all tech-
nical faults and malfunctions. An in-depth, complicated mul-
tiprotocol analysis can be greatly supported or even replaced
by a troubleshooting methodology based on data analysis ap-
proaches. The mobile telecommunications domain has been
experiencing rapid development recently. Introduction of new
technologies and services, as well as multivendor environment
distributed across the same geographical area create a lot of
challenges in network operation routines. Maintenance tasks
have been recently becoming more and more complicated,
time consuming and require big data analyses to be per-
formed. Most network maintenance activities are completed
manually by experts using raw network management informa-
tion available in the network management system via multiple
applications and direct database queries. With these circum-
stances considered, identification of network failures is a very
difficult, if not an impossible task. This explains why effec-
tive yet simple tools and methods providing network opera-
tors with carefully selected, essential information are needed.
Hence, in this paper efficient approximated alarm correlation
algorithm based on the k-means cluster analysis method is
proposed.

Keywords— alarm correlation, alarm patterns, cluster analysis,
mobile telecommunication network, root cause analysis.

1. Introduction

The history of mobile telecommunication started in the late
1970s, when analog telephony standards were introduced to
cover basic voice calls. The entire family of these analog
systems is referred to as 1G. In the 1990s, the digital age of
mobile communication began along with the introduction
of the so-called 2G technology. Technology development,
driven by moving towards mobile data transfers with ever
higher speeds, resulted in the introduction of 2.5G (GPRS),
3G and 4G/LTE standards. Currently, the telecommunica-
tion community is working on the development and intro-
duction of the 5G standard, which is supposed to be ready
for use by 2020 [1].

The generic diagram a mobile telecommunication network
is presented in Fig. 1.
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Typical architecture of a mobile telecommunication

A mobile telecommunication network consists of two major
functional subsystems: the radio access network (RAN) and
the core network (CN).

RAN is responsible for managing radio resources, includ-
ing strategies and algorithms for controlling power, chan-
nel allocation and data rate. It allows the user terminal
equipment (UE) to access network services. The RAN con-
sists of the following elements, depending on the technol-
ogy used: 2G base station controller (BSC), 3G radio net-
work controller (RNC), base station control function (BCF),
2G base transceiver station (BTS), 3G base transceiver sta-
tion (NodeB), enhanced node B, 4G base transceiver station
(eNodeB) and transceiver (TRX).

The CN is mainly responsible for high-level traffic aggre-
gation, routing, call control/switching, user authentication
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and charging. Some of the CN subsystems are: 2G, 3G mo-
bile switching center (MSC), 2G, 3G visitor location reg-
ister (VLR), 2G, 3G home location register (VLR), 2G,
3G authentication center (AC), 2G, 3G equipment iden-
tity register (EIR), 2G, 5G service GPRS support node
(SGSN) [1]-[3].

The entire network is managed by the network management
system, the so-called NMS, which provides several network
management functionalities. One of the primary functions
of the NMS is fault management. It is a term used in the
network management domain, focusing on processes related
to diagnosing and fixing network faults.

In the paper, we propose the approximated network faults
diagnosing methodology based on the cluster analysis
k-means algorithm.

The paper is organized as follows: In Section 2 we briefly
introduce the Network Fault Management domain. Sec-
tion 3 introduces novel alarm correlation methodology
based on k-means clustering approach. Section 4 illus-
trates experiments and results achieved. Finally concluding
remarks are given in Section 5.

2. Preliminaries and Problem Statement

The fault management domain of the network is character-
ized by a few definitions and notations that are central to
this paper [4].

e event is an exceptional condition occurring in the
operation of hardware or software within the network
managed; an instantaneous occurrence at a time,

e event correlation is the process of establishing rela-
tionships between network events,

e root causes, are events that can cause other events
but are not caused by other events; they are associated
with an abnormal state of network infrastructure,

e error is a discrepancy between an observed or com-
puted value or condition and a true value or condi-
tion, assumed to be correct,

o failure or fault is considered to be a kind of an error,

e symptoms are external manifestations of failures (er-
rors) which are observed as alarms.

Fault diagnosis usually involves three processes: fault de-
tection, fault localization (also known as fault isolation or
root cause analysis) and testing the possible hypotheses [4].
Fault detection is the process of collecting information re-
lated to malfunctions of the network’s components (network
elements) in the form of alarms [4].

Fault localization or root cause analysis (RCA) is the pro-
cess of identifying the causes of faults. It comprises several
stages of correlating events (including alarms) which oc-
curred over a certain period of time, and requires technical
knowledge about the system analyzed [4], [S].
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Alarm correlation is the process of grouping alarms which
refer to the same problem, in order to highlight those which
indicate the possible root cause [6].

The advantages of automating RCA and alarm correlation
routines are numerous. By automating the troubleshoot-
ing process, we shorten the time needed for identifying
a potential source of the problem, which impacts the dura-
tion of downtimes and quality of service (QoS) figures for
the network in question. Short troubleshooting times bring
benefits in the form of satisfying the terms of customers’
service level agreements (SLAs). In addition, less skilled
personnel can be involved in network operation tasks, thus
reducing network maintenance costs [7].

There are several root cause analysis techniques described
in the literature. We can divide them into three major cat-
egories: artificial intelligence techniques, model traversing
and the so-called fault propagation model techniques [4].
All techniques are based either on predefined expert sys-
tem knowledge, network static information or network dy-
namic information. The static knowledge comes from the
topology and system structure. The dynamic network in-
formation is connected with the functional behavior of the
network [4], [8], [9]. The methodology proposed in this
paper helps discover relations between alarms generated by
the network, thus contributing to analysis of static and dy-
namic network characteristics in the RCA process.

The amount of data to be analyzed and the limited analy-
sis lead time pose a major challenge while troubleshooting
faults in such a complex system like a telecommunication
network. These two factors play a key role in fast problem
resolution and minimize consequences for end users. The
volume of troubleshooting data processed during propaga-
tion of faults in a large network can easily exceed several
dozens of alarms per second. For those faults that impact
the usability of the network by considerable amounts of end
users, the resolution time is crucial and has a big financial
impact on the service provider. To cope with the problem
referred to above, the data correlation methodology should
be characterized by fast processing, as well as by easy in-
terpretation and reliable quantification of the results.
Medium size mobile telecommunication networks consist
of several thousand of network elements, including RAN
and CN subsystems. With all functional dependencies be-
tween network elements taken into consideration, the entire
network is very complex. There are a lot of network ele-
ments, and each of them can potentially generate alarms.
As per the fault management objective, network alarms col-
lected by NMS should be correlated and the potential root
cause of the problem should be identified within a short
time. Analysis of alarm symptoms which leads to discov-
ering the root cause of the problem is covered by the alarm
correlation and root cause analysis processes. This paper
focuses on the alarm correlation process which works on
the alarm data sets. Each raw alarm data record contains
several alarm attributes:

e time of alarm, this attribute contains the date and
time with the precision of one second,
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e alarm number, a unique number which identifies
the fault. Usually the alarm numbers are divided into
ranges representing a specific subsystem, network el-
ement type and alarm type,

e alarm type can be specified as communication, or
for example equipment type,

e alarm description inside the alarm frame is a very
short, compact description of the fault that usually
contains a brief description (a few words) of what
has happened,

e alarm severity specifies the importance of the fault
and describes the alarm class. It can take one of
the following logical values: critical, major, medium,
minor or warning,

e name of the object is the object identification label
which clearly identifies the network element which
has generated the alarm event,

In the case of a fault of a specific network element, the
alarm rate can reach several dozen alarms per second. Usu-
ally, failures related to one network element cause other
network components to send relevant alarms as well. Ad-
ditional troubleshooting difficulty in a complex system like
a mobile telecommunication network stems from the num-
ber of network elements, as well as from their geographical
distribution. In the attached example a set of BTSes con-
nected to the BSC via BCFs is considered. The transmis-
sion problem related to the connection between the BSC
and BCFs generates several alarms from BCFs and BTSes.
The example shows how one problem triggers a string of
alarms for all related network elements. If outage of critical
network elements occurs, the network management system
is flooded by large quantities of alarms. In these condi-
tions, the operator has very limited time to diagnose what
and where has happened. This is the reason behind the need
to develop fast and simple methods to deal with big amount
of symptom-describing data (alarms). It is worth mention-
ing that apart from the fast alarm correlation methodology,
the additional goal is to work on reducing the amount of
data (alarms) which are being analyzed. This is achieved by
identifying repeatable alarm patterns which can be analyzed
as one atomic entity to simplify the correlation process and
to reduce amount of data to be processed.

In the following section a methodology is proposed which
addresses most of the abovementioned challenges involv-
ing the correlation of alarms in mobile telecommunication
networks.

3. Proposed Methodology Approach
using Cluster Analysis in RCA

There are several RCA methods proposed in the literature
which relate to the subject of correlating alarm symptoms.
In general, the methods are complicated and difficult to be
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implemented in practice. Therefore, this approach to alarm
correlation is fast and practical.

As mentioned in Section 2, each alarm has six major at-
tributes: occurrence time, number, description, type, sever-
ity, name of the alarming object (network element). All
attributes can be used in the RCA process. The most im-
portant alarm attribute, which plays a fundamental role in
troubleshooting, is alarm occurrence time. It is the main
factor used for alarm correlation in this proposal.

In the approach presented, the alarm correlation method-
ology focuses on discovering, within the alarm data set,
those which occurred within a short period of time. Hence,
in this paper we will use the cluster analysis domain, as-
suming alarm occurrence as the clustering attribute. Prac-
tice shows that alarms which represent causal sequences
of events may be grouped into clusters with limited time
intervals. The alarm clusters identified constitute an alarm
correlation hypothesis, which should be further analyzed by
domain experts. Apart from the correlation of alarms, the
goal is to find the root cause of the sequence of clustered
alarms. Practice shows that the first alarm in the cluster
(based on the occurrence time) is usually the root cause. It
may happen that multiple incidents occur within the same
time interval. In such a case, it is always the expert’s role
to evaluate the alarm clusters and to validate the alarm cor-
relation hypothesis proposed.

The nature of the alarm flow reflects certain physicality of
the incident within the network. The alarms which are re-
lated are either collected at the same time or are generated
by network elements with a certain delay. In practice, it
has been observed that correlated alarms can occur within
intervals of 1-2 s. In the light of the above, it is essen-
tial to establish a fast methodology for discovering, within
alarm data sets, alarms clusters characterized by the differ-
ence between alarm occurrence of approximately 2 seconds.
Hence, we define the correlation criterion as the interval
between the occurrence of alarms within the cluster.
Figure 2 illustrates two alarm cluster examples. The first
cluster includes three alarm events {ej,e;,e3} that occurred
at the same time, the second cluster consists of three alarm
events {es,es,eq} which occurred sequentially, with a one
second delay.

e e, es e
>

>
2 4, 4 t 2 f t[s]

Fig. 2. Visualization of alarm correlation.

The cluster analysis domain offers techniques satisfying the
objective of the method that consists in discovering clusters
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of alarms. For the analysis, we selected the k-means clus-
tering method for a filtered set of network elements known
as a topology chain.

Each topology chain consists of network elements which
share the same parent as the root of the topology. Typ-
ically, the roots are the main components of the network
architecture and contain several child objects to perform the
individual function. According to an alternative definition,
the root object is the object which does not possess a par-
ent, it is the first object in the hierarchy of a given type.
An example of a topology chains is presented in Fig. 3.

Topology g
chain 1 g Topology
E chain n
|Bsc-1| [Bscal ] 2 -
h =]
1 )| 2
A\ 8
|BCF-1| |BCF—2L %>\D .
I [ bl
| &
|BTS-1| |BTS-21" £,
[}
~— -
——

Outer topology chain correlation

Fig. 3. Mobile telecommunication network topology and corre-
lation view.

The term cluster analysis was used for the first time in 1954
in the context of analyzing anthropological data [10]. The
k-means algorithm is recognized as the most important al-
gorithm in the entire history of data mining [11], [12]. It
represents the so-called combinatorial family of clustering
algorithms. The cluster analysis, also known as classifi-
cation without supervision, has two major characteristics.
The clusters are unknown a priori and we do not dispose of
the learning set. The goal of the analysis is to discover and
group disjoint sets of data which are sharing similar char-
acteristics (qualitative or quantitative features). In this type
of analysis, the goal is to propose a data set split maximiz-
ing similarity features inside the sets and, at the same time,
minimizing similarity between the disjoint sets. The same
task can be translated into minimizing object dissimilari-
ties inside the sets (clusters) and maximizing dissimilarities
between sets. The cluster analysis process is based on the
comparison of data set observations, resulting in generating
groups of data which are more similar to each other within
the group, than to objects from other groups (clusters). The
popular methods of measuring dissimilarities, described in
the literature concerned with cluster analysis, include the
following: Euclidean distance, squared Euclidean distance,
Minkowski distance, Mahalanobis distance, cosine distance
and power distance [13]-[16]. In the approach presented,
we analyze the time of occurrence of the alarms within the
network, which is noted as: X = {xj, ...,xy}. The obser-
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vations have labels assigned i € {1, ...,N}. The squared
Euclidean distance in the time domain is used as the cor-
relation measure:

d(xi,x) =l i —x; |17 (0

The general principle of combinatorial clustering is based
on the analysis of three characteristics: the total sum of
dissimilarities between sample elements (7 — total), the
sum of dissimilarities between sample elements belonging
to the same cluster (W — within), the sum of dissimilari-
ties between sample elements belonging to different clusters
(B — between).

The characteristics presented satisfy the following inquiry:
T =W +B. For a given data set the value of T is constant
and we target to minimize W or maximize B characteristics
across all possible assignments of data set elements to the
clusters [13], [16].

We denote dissimilarities between observations as d (x;, x;)
and we also define classificator C(i), the function which
based on the input maps the data to specific class, in our
case the cluster. Classificator C(i) returns cluster number
(k € K) for each observation i, j from the input data set.
Following the above notations, we can define W as
[13], [16]:

1 K
v =33 ¥ X l-xlt @
k=1 C(i)=k C(j)=k
1
fk:— Xj, (3)
Ne el
K
W) =Y N Y llxi—%|P, )
k=1 cC(i)=k

where: X; is the mean vector associated with k-th cluster
denoted as my, and it is called centroid for cluster k, and Ny
is the number of elements in cluster k.

Inquiry (4) serves as a basis for an entire family of algo-
rithms referred to as k-means method algorithms.

The idea behind the k-means algorithm can be specified as
follows [13]:

1. Propose clusters distribution determining means
(centroids) of the clusters {my, ... ,my}.

2. Assign the observations to the closest cluster based
on its distance to the centroid.

3. Update the centroids based on the observations values
assigned to the clusters.

4. Repeat steps 1-3 until centroids do not change and
the observations do not change their assignments.

The steps referred to above accomplish the following opti-
mization task which can be seen as a variance minimization
task [17]:

K
min N Hxi—mkH2 . 5)
Cv{’"k}{(l; C(i;:k
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An important note for this method is that we have to specify
the number of clusters K in advance, and that the number
of clusters we predefine should be lower than the number
of elements in the sample N (K < N) [13], [16].

In this paper we focus on practical applications of the
k-means method. As the k-means method requires spec-
ifying the number of clusters for the analysis, we perform
the analysis by iterating the number of clusters K from 1 up
to the value of K < N. The proposed correlation methodol-
ogy is based on applying the k-means iterative algorithm to
pre-filtered data sets which represent the so-called topology
chains and can be described by the following inquiry:

K
Y (max ( min Y Ne Y [l xi—my ||2)> (6)
topology Kfe<3 C!{mk}{(kzl C(i)=k
chain

In the proposed approach, we introduced an additional pa-
rameter which is used as the clustering criterion. It is the
average Euclidean squared distance between the observa-
tions in cluster c. The coefficient ¢ is expressed by the re-
lation of within-cluster sum of squared distances between
the observations (the average squared distance between the
observations within the cluster in the time domain) to the
number of observations in the cluster (cluster_size):

average_squared_distance_within_cluster
c= .

cluster_size

From the alarm correlation point of view, the squared dis-
tance up to 3 s (distance of 1.73 s) is a reasonable value
for general fault management in mobile telecommunication
networks.

The alarm correlation methodology proposed in this paper
can be summarized by the following steps:

1. Pre-processing — decomposing alarm data sets into
smaller parts, following the root object filtering cri-
teria (generation of topology chains),

2. Applying the k-means iterative algorithm, along with
the time correlation criteria for each of the filtered
topology chains from step 1 (this part requires mul-
tiple execution, due to k-means algorithm’s stability
issue),

3. Formulating the RCA hypothesis list based on results
of step 2,

4. RCA analysis performed by domain experts.

In the experiment, we used the R package and the
k-means function implemented in this environment. The
k-means function in R offers several algorithms like Lloyd,
Forgy, and MacQueen [18]-[22]. Lloyd’s, MacQueen’s
and Forgey’s (for continues cases) algorithms follow an
intuitive, definition-based approach by repeatedly comput-
ing and assigning the observations to the closest cen-
ter (centroid) [23]. By default, the R package uses the
k-means algorithm implementation proposed by Hartigan
and Wong.
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Fig. 4. Number of clusters satisfying the correlation objective,
identified for the entire sample, with no topology filtering.

Experiments show that the number of clusters discovered
by iterating the k-means method is growing non-linearly
until we reach the K clusters split. It is illustrated by the
results presented in Fig. 4. In addition, the processing of
the algorithm is time consuming (computational complexity
O(n’k), where n is the size of the data sample, k is the
number of clusters) and results in a processing time of
several hours for a data set containing several thousand
alarms.

Due to above constraints and in consideration of the role
of topology filtering in the RCA analysis, we have pro-
posed an additional pre-processing step, which makes the
methodology more efficient and acceptable from the point
of view of the processing time.

The additional step consists in dividing the data set into
subsets containing alarms belonging to one topology chain
(following one topology root network element). The topol-
ogy pre-filtering step introduces a very useful property of
the k-means iterative methodology. It introduces a global
maximum to the function between the number of clusters
satisfying the correlation objective and the total number of
clusters generated. This property, shown in Fig. 5, is ob-
served for the first time and was not described in any paper
in the past as per the author’s knowledge.

This approach also addresses technical specificities of the
correlation which shows that the majority of correlated
events originate from the same topological chain. This type
of correlation is called inner topology correlation. It is also
possible to execute an outer topology correlation by com-
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Fig. 5. Number of clusters satisfying the correlation objective
(number of observations per split, where ¢ < 3), as the function
of the number of splits K for sample 1. The global maximum of
34 clusters satisfying the correlation objective was achieved for
the value of 954 and 1051 total clusters generated for a sample
containing 1400 alarms.
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paring the centroids and alarms associated with them with
inner topology correlation sets.

An example of the distribution of topology chains in a mo-
bile telecommunication network is presented in Fig. 3.
This methodology of correlation enables us to identify the
method of partitioning the data set which maximizes the
number of clusters for given correlation criteria, within a
reasonable time. It is an optimal clustering solution which
we seek for each data set, as we expand the maximum
number of clusters for a given data set. The method can
be used selectively for a chosen topology chain, or as the
concatenation of several or all topology chains.

4. Results and Examples

The presented examples of partitioning performed on real
alarm data samples are from a live mobile operator network.
The data set which has been selected for simulations had
1440813 alarms divided into several sample sets. The data
set which is analyzed in the example contains 7517 alarms.
For the inner topology chain analysis we selected one BSC
(BSC-1) which filters 1600 alarms belonging to that topol-
ogy chain. The data originates from a heterogeneous, live
mobile network containing 2G, 3G and 4G network ele-
ments, and was collected between July 2014 and May 2015.
The data sample selected for analysis contains 28 BSCs and
27 RNCs.

As mentioned earlier, the k-means algorithm results depend
on the initial conditions. This means that the starting cen-
troids selected for the analysis, as well as the convergence
process of each iteration result in a different number of clus-
ters computed by the algorithm. Situations are also expe-
rienced where, for given number of clusters, the algorithm
does not converge in within a specified limit of iterations
or, where solutions are trapped in the local extremum. The
above factors mean that each iteration run finishes with
a different amount of detected clusters, as well as with
a different amount of clusters matching the events correla-

average_squared_distance_within_cluster <3
cluster_size —

Regardless of the specificities referred to above, the approx-
imated iterated k-means algorithm proposed herein selects
major clusters from the data set and the results are satisfac-
tory. It can be seen that the main clusters, especially those
with several events, are discovered by each iteration of the
algorithm.

Figure 4 presents the algorithm’s output for the entire
data set containing 7517 alarms, without topological pre-
filtering. The test took 4 hours to perform in this case.
We can see that iteration of the k-means algorithm for
non-filtered data generates a number of clusters growing in
a non-linear trend. Figure 5 presents output of the k-means
iterative algorithm which was run on a pre-filtered data
subset representing alarms belonging to the BSC-1 network
element topology chain.

From the RCA perspective, each cluster which satisfies the
correlation objective (¢ < 3) represents a cause of the first

tion criteria specified:

100

alarm or of several alarms from the cluster identified. The
algorithm generates only a filtered correlation hypothesis,
which has to be verified by an expert before assuming re-
pairs of the network [5]. The experiments confirmed ef-
fectiveness of the methodology in question. In all clus-
ters which satisfy the correlation criteria (¢ < 3), the trou-
bleshooting hypothesis has been verified very quickly. It
is worth mentioning that during the root cause hypothesis
verification stage, topology is the factor that should always
be taken into account. The proposed methodology takes
into consideration topological aspects of the troubleshoot-
ing process by analyzing topology chain correlations. Thus,
by default, we take into consideration the topological rela-
tion between the network elements generating alarms.

4.1. Alarm Inner Topology Correlation Example
Discussion

For the example and discussion we selected one of 34 clus-
ters identified by the k-means algorithm iterations with the
centroid value of 82482.667 for inner topology correlations
related to the BSC-1 topology chain. It represents one of

[ BCF-1| [Bcr2| [ BCF3 | | BCF-4 |
[Brs-1| [BTs2| [BTs3| |BTS-4 || BTS= |
BCCH BCCH BCCH BCCH\ /BCCH
X X X X X

Fig. 6. Alarm correlation example.

Table 1
2G alarm correlation example
Time of
event oc- Alarm type Network element
currence
82481 B.TS O.&M BSC-1/BCF-2
link failure
82481 B.TS O.&M BSC-1/BCF-4
link failure
82481 B.TS O.&M BSC-1/BCF-3
link failure
82481 B.TS O.&M BSC-1/BCF-1
link failure
82484 BCCH missing BSC-1/BCF-4/BTS-4
82484 BCCH missing BSC-1/BCF-4/BTS-5
82484 BCCH missing BSC-1/BCF-1/BTS-1
82484 BCCH missing BSC-1/BCF-3/BTS-3
82484 BCCH missing BSC-1/BCF-2/BTS-2
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the clusters for a global maximum split of 954 clusters for
the data set sample. The fault illustration is presented in
Fig. 6. Table 1 describes alarms used in the example. The
transmission type of alarm in the network element (BCF)
is causing problems with the radio broadcasting channel in
another network element (BTS). The rectangle below the
BTS shown in the picture symbolizes the radio network sec-
tor which is broadcast by the BTS. Inside the sector there is
one radio channel component (BCCH), which plays a sig-
naling role for the sector. The broadcast common channel
(BCCH) is handling signaling communication in the sector
and allows UE to log in to the network. Due to BCCH
missing, there is no traffic in this sector. The problem is
affecting all sectors.

5. Summary and Conclusions

In the experiment conducted, we have been analyzing sev-
eral dozens of data samples with alarms from a real life
mobile telecommunication network. The k-means iterative
clustering methodology for data pre-filtered topology-wise
is a very effective approach enabling to discover alarm
correlation clusters (potential root cause analysis hypoth-
esis). We have proposed an approximated alarm corre-
lation algorithm which employs the k-means method for
the topology chain data set by iterating the number of
clusters from 0 up to K (K < N). In the first stage, we
propose to execute so-called inner topology chain correla-
tion, which may be followed by an outer topology chain
correlations analysis. The inner topology chain correla-
tion iterations are characterized by reaching global max-
imums for the function of cluster numbers satisfying the

average_squared _distance_within_cluster <
cluster_size — 3) to

correlation criteria:(
the total number of clusters generated. This feature im-
plies the possibility to limit the number of k-means func-
tion iterations to the value linked with the described maxi-
mum, which will additionally reduce the execution time.
It has been observed that a vast majority of the cor-
related alarms originate from the inner topology chain
correlation analysis, and that they play a fundamental
role in selecting the event correlation hypothesis. The
tests confirmed that the computation time of inner topol-
ogy correlations is very reasonable in terms of practi-
cal alarm correlation. Partitioning operations for samples
containing between 1200 and 2000 alarms took 10-15 s
maximum.

In addition, from the overall RCA process perspective, the
centroids identified indicate the moments in time which the
troubleshooting engineer should pay special attention to. It
has been also proven that data clustering significantly re-
duces the size and the quantity of the data analyzed, which
makes the analysis process (network problem troubleshoot-
ing) much faster and more efficient. As far as final con-
clusions concerning the root cause of the faults are con-
cerned, we need to consider other alarm attributes as well.
These include: severity, number, description, type, network
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element type and name. There is one more practical con-
clusion related to the experiment. The correlation method
can be used to create the so-called suppression alarm rules
in the NMS. The suppression rules can be discovered af-
ter offline analysis of correlated alarms from the network
and they reduce number of alarms being analyzed. For
example, all alarms labeled as “BTS O&M link failure”
and “BCCH missing” from the case presented in Fig. 6,
identified within the same network element, can be sup-
pressed by 1 alarm labeled “Traffic outage”. This approach
is similar to the pattern recognition concept, where patterns
in data set analyzed are recognized and where predefined
data subsets are used for further analysis and classification
of data [24], [25].
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