PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the beam divergence for one-rod core microstructured optical fibres

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The evolution of microstructured optical fibers with hexagonal array (H-MOFs) of air-holes rooted in the background of undoped silica has led to the realization of an ideal host for encouraging and technologically entitled optical properties. We focus to explore the divergence of radiation into free space from the end-facet of solid-core H-MOFs by using the improved theoretical model. Also, we investigated the wavelength dependence of beam divergence angle for principal core mode of H-MOFs under step-index fiber approximation (SIFA). Experimental results have been included for comparison.
Twórcy
autor
  • Center for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
  • Center for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
  • Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
Bibliografia
  • [1] J. Arriaga, J.C. Knight, P.St.J. Russell, Modelling the propagation of light in photonic crystal fibres, Phys. D 189 (2004) 100–106.
  • [2] J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, J.-P. de Sandro, Photonic crystals as optical fibres - physics and applications, Opt. Mater. 11 (1999) 143–151.
  • [3] E. Yablonovitch, Photonic band-gap structures, J. Opt. Soc. Am. B 10 (1993) 283–295.
  • [4] T.F. Krauss, R.M. De La Rue, S. Brandt, Two-dimensional photonic band gap structures operating at near-infrared wavelengths, Nature 383 (1996) 699–702.
  • [5] A. Mekis, J.C. Chen, I. Kurland, S.H. Fan, P.R. Villeneuve, J.D. Joannopoulos, High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett. 77 (1996) 3787–3790.
  • [6] D.M. Atkin, P.St.J. Russell, T.A. Birks, P.J. Roberts, Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure, J. Mod. Opt. 43 (1996) 1035–1053.
  • [7] T.A. Birks, P.J. Roberts, P.St.J. Russell, D.M. Atkin, T.J. Shepherd, Full 2-D photonic band gaps in silica/air structures, Electron. Lett. 31 (1995) 1941–1943.
  • [8] J.C. Knight, T.A. Birks, P.St.J. Russell, J.P. de Sandro, Properties of photonic crystal fiber and the effective index model, J. Opt. Soc. Am. A 15 (1998) 748–752.
  • [9] P.L. Gourley, J.R. Wendt, G.A. Vawter, T.W. Brennan, B.E. Hammons, Optical properties of two-dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors, Appl. Phys. Lett. 64 (1994) 687–689.
  • [10] R. Tonucci, B.L. Justus, A.J. Campillo, C.E. Ford, Nanochannel array glass, Science 258 (1992) 783–785.
  • [11] P.St.J. Russell, Photonic-crystal fibers, J. Lightwave Technol. 24 (2006) 4729–4749.
  • [12] P.St.J. Russell, Photonic crystal fibers, Science 299 (2003) 358–362.
  • [13] J.C. Knight, Photonic crystal fibers, Nature 424 (2003) 847–851.
  • [14] J.C. Knight, T.A. Birks, P.St.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (1996) 1547–1549, see also errata Opt. Lett., 22, 484-485 (1997).
  • [15] T.A. Birks, J.C. Knight, P.St.J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett. 22 (1997) 961–963.
  • [16] W.H. Reeves, J.C. Knight, P.St.J. Russell, P.J. Roberts, Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Exp 10 (2002) 609–613.
  • [17] T.M. Monro, D.J. Richardson, N.G.R. Broderick, P.J. Bennett, Holey optical fibers: an efficient modal model, J. Lightwave Technol. 17 (1999) 1093–1102.
  • [18] T.M. Monro, D.J. Richardson, N.G.R. Broderick, P.J. Bennett, Modelling large air fraction holey optical fibers, J. Lightwave Technol. 18 (2000) 50–56.
  • [19] D. Mogilevtsev, T.A. Birks, P.St.J. Russell, Group-velocity dispersion in photonic crystal fiber, Opt. Lett. 23 (1998) 1662–1664.
  • [20] J.C. Knight, J. Broeng, T.A. Birks, P.St.J. Russell, Photonic band gap guidance in optical fibers, Science 282 (1998) 1476–1478.
  • [21] T.M. Monro, P.J. Bennett, N.G.R. Broderick, D.J. Richardson, Holey fibers with random cladding distributions, Opt. Lett. 25 (2000) 206–208.
  • [22] W.J. Wadsworth, J.C. Knight, W.H. Reeves, P.St.J. Russell, J. Arriage, Yb3+-doped photonic crystal fiber laser, Electron. Lett. 36 (2000) 1452–1454.
  • [23] K. Furusawa, T.M. Monro, P. Petropoulos, D.J. Richardson, Mode locked laser based on ytterbium doped holey fiber, Electron. Lett. 37 (2001) 560–561.
  • [24] T.M. Monro, Y.D. West, D.W. Hewak, N.G.R. Broderick, D.J. Richardson, Chalcogenide holey fibers, Electron. Lett. 36 (2000) 1998–2000.
  • [25] M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C.M. de Sterke, N.A.P. Nicorovici, Microstructured polymer optical fiber, Opt. Exp. 9 (2001) 319–327.
  • [26] T.M. Monro, D.J. Richardson, P.J. Bennett, Developing holey fibers for evanescent field devices, Electron. Lett. 35 (1999) 1188–1189.
  • [27] Y.L. Hoo, W. Jin, H.L. Ho, D.N. Wang, Evanescent-wave gas sensing using microstructure fiber, Opt. Eng. 41 (2002) 8–9.
  • [28] S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, J. Kirchhof, Defect and lattice structure for air-silica index-guiding holey fibres, Opt. Lett. 31 (2006) 164–166.
  • [29] T.M. Monro, H. Ebendorff-Heidepriem, Progress in microstructured optical fibers, Annu. Rev. Mater. Res. 36 (2006) 467–495.
  • [30] J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Photonic crystal fibers: a new class of optical waveguides, Opt. Fiber Technol. 5 (1999) 305–330.
  • [31] D. Gloge, Weakly guiding fibres, Appl. Opt. 10 (1971) 2252–2258.
  • [32] M. Koshiba, K. Saitoh, Applicability of classical optical fibre theories to holey fibres, Opt. Lett. 29 (2004) 1739–1741.
  • [33] M.J. Gander, R. McBride, J.D.C. Jones, T.A. Birks, J.C. Knight, P.St.J. Russell, P.M. Blanchard, J.G. Burnett, A.H. Greenaway, Measurement of the wavelength dependence of beam divergence for photonic crystal fiber, Opt. Lett. 24 (1999) 1017–1019.
  • [34] A.W. Snyder, J.D. Love, Optical Waveguide Theory, Chapman & Hall, London, 1983.
  • [35] T. Hirooka, Y. Hori, M. Nakazawa, Gaussian and Sech approximations of mode field profiles in photonic crystal fibres, IEEE Photonics Technol. Lett. 16 (2004) 1071–1073.
  • [36] R.E. Wagner, W.J. Tomlinson, Coupling efficiency of optics in single-mode fibre components, Appl. Opt. 21 (1982) 2671–2687.
  • [37] C. Ruilier, F. Cassaing, Coupling of large telescope and single mode waveguides: application to stellar interferometry, J. Opt. Soc. Am. A 18 (2001) 143–149.
  • [38] O. Wallner, P.J. Winzer, W.R. Leeb, Alignment tolerances for plane-wave to single-mode fibre coupling and their mitigation by use of pigtailed collimators, Appl. Opt. 41 (2002) 637–643.
  • [39] Y. Dikmelik, F.M. Davidson, Fibre-coupling efficiency for free space optical communication through atmospheric turbulence, Appl. Opt. 44 (2005) 4946–4952.
  • [40] M. Toyoshima, Maximum fibre coupling efficiency and optimum beam size in the presence of random angular jitter for free-space laser systems and their applications, J. Opt. Soc. Am. A 23 (2006) 2246–2250.
  • [41] J. Ma, F. Zhao, L. Tan, S. Yu, Q. Han, Plane wave coupling into single-mode fibre in the presence of random angular jitter, Appl. Opt. 48 (2009) 5184–5189.
  • [42] C. Chen, H. Yang, H. Wang, S. Tong, Y. Lou, Coupling plane wave received by an annular aperture into a single-mode fibre in the presence of atmospheric turbulence, Appl. Opt. 50 (2011) 307–312.
  • [43] J.C.W. Corbett, J.R. Allington-Smith, Coupling starlight into single-mode photonic crystal fibre using a field lens, Opt. Express 13 (2005) 6527–6540.
  • [44] J. Corbett, A. Dabirian, T. Butterley, N.A. Mortensen, J.R. Allington-Smith, The coupling performance of photonic crystal fibres in fibre stellar interferometry, Mon. Not. R. Astron. Soc. 368 (2006) 203–210.
  • [45] J.C.W. Corbett, T.J. Morris, J.R. Allington-Smith, Tip-tilt requirements for coupling starlight into single-mode photonic crystal fibres using a lenslet: a first analysis, New Astron. Rev. 49 (2006) 675–680.
  • [46] M. Koshiba, K. Saitoh, Structural dependence of effective area and mode field diameter for holey fibres, Opt. Exp. 11 (2003) 1746–1756.
  • [47] N.A. Mortensen, J.R. Folkenberg, M.D. Nielsen, K.P. Hansen, Modal cut-off and the V parameter in photonic crystal fibres, Opt. Lett. 28 (2003) 1879–1881.
  • [48] J.R. Folkenberg, N.A. Mortensen, K.P. Hansen, T.P. Hansen, H.R. Simonsen, C. Jakobsen, Experimental investigation of cut off phenomena in nonlinear photonic crystal fibres, Opt. Lett. 28 (2003) 1882–1884.
  • [49] A. Sharma, H. Chauhan, A new analytical model for the field of microstructured optical fibres, Opt. Quant. Electron. 41 (2009) 235–242.
  • [50] D. Ghosh, S. Roy, S.K. Bhadra, Determination of modal effective indices and dispersion of microstructured fibres with different configurations: a variational approach, J. Mod. Opt. 57 (2010) 607–620.
  • [51] L. Zhang, Z. Wu, S. Gao, M. Cui, Study of a constructed function for approximating mode field in photonic crystal fibres, Opt. Eng. 51 (2012) 065003-1 -065003-11.
  • [52] D.K. Sharma, A. Sharma, Improved analytical model for the field of index-guiding microstructured optical fibers, Opt. Commun. 366 (2016) 127–135.
  • [53] D.K. Sharma, A. Sharma, S.M. Tripathi, Optimum splicing of high-index core microstructured optical fibers and traditional single-mode fibers using improved field model, Opt. Laser Technol. 109 (2019) 157–167.
  • [54] Z. Zhu, T.G. Brown, Analysis of the space filling modes of photonic crystal fibres, Opt. Exp. 8 (2001) 547–554.
  • [55] Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, L. Chai, Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches, Appl. Phys. B 85 (2006) 597–601.
  • [56] Y.-F. Li, C.-Y. Wang, M.-L. Hu, A fully vectorial effective index method for photonic crystal fibres: application to dispersion calculation, Opt. Commun. 238 (2004) 29–33.
  • [57] A. Sharma, Optimal variational method for rectangular and channel waveguides, in: Guided Wave Optics; Selected Topics, Viva Books, New Delhi, 2005.
  • [58] A. Ghatak, S. Lokanathan, Quantum Mechanics: Theory and Applications, Macmillan, New Delhi, 1999.
  • [59] A. Sharma, S.I. Hosain, A.K. Ghatak, The fundamental mode of graded-index fibers: simple and accurate variational methods, Opt. Quantum Electron. 14 (1982) 7–15.
  • [60] A. Sharma, J.-P. Meunier, On the scalar modal analysis of optical waveguides using approximate methods, Opt. Commun. 281 (2008) 592–599.
  • [61] A. Sharma, A.K. Ghatak, A variational analysis of single mode graded-index fibers, Opt. Commun. 36 (1981) 22–24.
  • [62] A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, Cambridge, 1998.
  • [63] A. Ghatak, K. Thyagarajan, Optical Electronics, Cambridge University Press, Cambridge, 1989.
  • [64] N.A. Mortensen, J.R. Folken, P.M.W. Skovgaard, J. Broeng, Numerical aperture of single-mode photonic crystal fibres, IEEE Photonics Technol. Lett. 14 (2002) 1094–1096.
  • [65] J.M. Lazaro, A. Cobo, J.M. Lopez-Higuera, Effective index and mode width sensitivities to opto-geometrical parameters on index-guided photonic crystal fibres, IEEE Photonics Technol. Lett. 20 (2008) 205–207.
  • [66] M. Artiglia, M. Calzavara, P.Di Vita, A. Sharma, A new procedure for analysis of single-mode-fiber far-field data, Fiber Integr. Opt. 9 (1989) 37–42.
  • [67] F. Villuendas, F. Calvo, J.B. Marques, Measurement of mode field radius in axially non symmetrical single-mode fibres with arbitrary power distribution, Opt. Lett. 12 (1987) 941–943.
  • [68] M. Young, Mode-field diameter of single-mode optical fibre by far-field scanning, App. Opt. 37 (1998) 5605–5619.
  • [69] N.A. Mortensen, J.R. Folkenberg, Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena, Opt. Exp. 10 (2002) 475–481.
  • [70] A.C. Boucouvalas, Use of far-field radiation pattern to characterize single-mode symmetric slab waveguides, Electron. Lett. 19 (1983) 120–121.
  • [71] W.A. Gambling, D.N. Payne, H. Matsumura, R.B. Dyott, Determination of core diameter and refractive-index difference of single-mode fibres by observation of the far-field pattern, Microwaves Opt. Acoustics 1 (1976) 13–17.
  • [72] A. Dabirian, M. Akbari, N.A. Mortensen, The radiated fields of the fundamental mode of photonic crystal fibres, Opt. Exp. 13 (2005) 3999–4004.
  • [73] B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, New Jersey, 2007.
  • [74] M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, A. Sharma, Mode field diameter measurements in single-mode optical fibres, J. Lightwave Technol. 7 (1989) 1139–1152.
  • [75] C. Pask, Physical interpretation of Petermann’s strange spot size for single-mode fibers, Electron. Lett. 20 (1984) 144–145.
  • [76] K. Saitoh, M. Koshiba, Numerical modelling of photonic crystal fibres, J. Lightwave Technol. 23 (2005) 3580–3590.
  • [77] K. Saitoh, M. Koshiba, Empirical relations for simple design of photonic crystal fibres, Opt. Exp. 13 (2004) 267–274.
  • [78] D. Marcuse, Loss analysis of single-mode fibre splices, Bell Syst. Tech. J. 56 (1977) 703–718.
  • [79] F. Brechet, J. Marcou, D. Pagnoux, P. Roy, Complete analysis of the characteristics of propagation into photonic crystal fibres by the finite element method, Opt. Fiber Technol. 6 (2000) 181–191.
  • [80] T.A. Birks, D. Mogilevtsev, J.C. Knight, P.St.J. Russell, J. Broeng, P.J. Roberts, J.A. West, D.C. Allan, J.C. Fajardo, The analogy between photonic crystal fibres and step index fibres, in: Technical Digest of the Optical Fibre Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fibre Communication, OFC/IOOC’ 99, IEEE Conf. Proc., 1999, 114–116.
  • [81] Y. Li, Y. Yao, M. Hu, L. Chai, C. Wang, Improved fully vectorial effective index method for photonic crystal fibres: evaluation and enhancement, Appl. Opt. 47 (2008) 399–406.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba098a31-c5fb-4566-b881-be48689c0571
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.