International Symposium on

HYDROACOUSTICS AND ULTRASONICS
EAA Symposium (formerly 13" FASE Symposium)

Gdansk-Jurata, 12-16 May 1997

Overview of the Development of Nonlinear Acoustics

M. A. Breazeale
National Center for Physical Acoustics
University of Mississippi
University, MS
U.S. A

ABSTRACT

Developments in nonlinear acoustics are followed from gases to liquids to solids. For all
materials the nonlinearity parameter can be defined as the negative ratio of the coefficient of the
nonlinear term to the coefficient of the linear term in the nonlinear wave equation. With this
definition we can compare the nonlinear behaviors of gases, liquids, and solids. In gases

B ; :
B=y+1=2. 6< B=X+2 <14. In crystalline solids 3 < B:%i& <15
2
The pure number § gives an impression of the nonlinearity to be expected in each instance.
However, recent measurements in solids such as rocks and PZT give a much larger nonlinear-
ity parameter. In this case, and similar ones, one must exercise care. Very large nonlinearity
parameters often can be explained by including previously ignored effects in the analysis. As

In liquids

an introduction, the nonlinear behavior of PZT is discussed.

INTRODUCTION

Early theoretical work on the propa-
gation of finite amplitude waves in an isen-
tropic gas was done by Stokes [1], Earnshaw
[2], and Riemann [3]. Various special
approximations and simplifications are
intended to obtain a solution in spite of the
nonlinearity. In 1935 Thuras, Jenkins and
O’Neill [4] demonstrated unequivocally that
waveform distortion occurs in an air-filled
tube because of nonlinear effects. Soon
thereafter it became necessary to investigate
the propagation of finite amplitude waves in
liquids. In water, nonlinear effects could be
studied using light diffraction. A plane
ultrasonic wave serves as a grating for the
light. As waveform distortion occurs the
ultrasonic wave becomes a blaze grating and
the diffraction patterns become asymmetrical.

Diffraction patterns-produced by a 1.7 MHz
ultrasonic wave [5] are shown in Fig. 1. The
progressive waveform distortion can be
followed as one increases the amplitude or
the propagation distance. Such waveform
distortion also occurs in solids, but its effect
is not as easy to demonstrate.

NONLINEAR DISTORTION IN SOLIDS

We were able to demonstrate the
presence of finite amplitude effects in alumi-
num [6] by measuring the presence of second
harmonics of a 30 MHz fundamental ultra-
sonic wave. The fact that the amplitude of
the second harmonic was proportional to the
square of the fundamental amplitude was
evidence that nonlinear effects were the cause
of the second harmonic generation.
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Figure 1. Light diffraction by ultrasonic waves in water. f=1.76 MHz.

The theoretical analysis for single
crystal solids could follow that for fluids,
provided the nonlinear equations describing
ultrasonic wave propagation in solids were
the same as those for fluids. This was true
for longitudinal wave propagation. (Shear
waves in solids do not couple to their second
harmonics in the first nonlinear terms, so
they can be ignored.) Our objective was to
evaluate coefficients of the nonlinear terms in
solids because they were a measure of the
deviation from the predictions of Hooke's
law.

THEORETICAL ANALYSIS FOR FLUIDS
AND CRYSTALLINE SOLIDS

The non-dissipative equation de-
scribing the propagation of finite amplitude
sound in an ideal gas is [7]
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where U is the particle displacement, and cg

is the velocity of propagation of a small
amplitude wave. This equation can be
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generalized by using an equation of state in
the form of a Taylor's series:
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This leads to an equation of the form
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This equation is to be compared with an
equation resulting from the application of
elasticity to crystalline solids. If one uses
elasticity and keeps higher order terms one
obtains an equation of the form
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where a is the distance in the propagation
direction and the expressions for K, and K3
are given in Table I. If one applies a bino-
mial expansion to the denominator in Eq. 3

and recognizes that cj:piq-, then Eq. 3

becomes
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These two equations have the same mathe-
matical form. This means that a finite
amplitude ultrasonic wave in a solid behaves
in the same way as a finite amplitude wave in
a fluid. The scaling factor is the ratio of
(B30 (£+2)

K, / A )
processes do not enter in either medium, we
can use the appropriate equation to define the
nonlinearity parameter as the negative ratio of
the coefficient of the nonlinear term to the
coeficient of the linear term in the nonlinear
wave equation. The appropriate expressions
for the nonlinearity parameter in gases,
liquids, and solids are found in Table IL.

As long as other

EXPERIMENTAL RESULTS

We have used the harmonic genera-
tion technique to evaluate the nonlinearity
parameters of a number of crystalline solids.
Qur results indicate that the nonlinearity
parameter in crystalline solids ranges from 3
to 15 (According to recent calculations it may
be slightly larger than this in certain solids.)
Typical behavior of the nonlinearity parame-
ter as a function of temperature in the [100]
direction in crystalline solids is shown in Fig.
2. One notices immediately that the results
for fused silica are different from those for
the other solids. Upon examination, one
finds that fused silica is not truly a crystalline
solid.
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Figure 2. Nonlinearity parameter as a
function of temperature.
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Table r-ﬁxpressions for K and K3 for
longitudinal waves in cubic crystals.

Material c% B

Gas r y+1
Po

Liquid A L
Py A

Cubic Solid ks i £
Po i

“Table 1I. Small amplitude sound velocity and
nonlinearity parameter in various media.

The exact reason for the behavior of fused
silica may be elusive, but I can confirm the
fact that the nonlinearity parameter is nega-
tive. We have examined harmonic generation
in fused silica with a phase sensitive detector
[7] and found that our results are consistent
with a negative nonlinearity parameter. The
point really is that fused silica is not a single
crystal.

We have examined the behavior of
another noncrystalline solid PZT and found
some equally interesting behavior [8]. In
Fig. 3 we show that the measured nonlinear-
ity parameter in one sample of PZT goes to
approsimately 1500 at the Curie Temperature.
Such behavior is far from that of a single
crystal. For this reason we examined the
frequency dependence of the nonlinearity
parameter of two samples of PZT. The
results are shown in Fig. 4. The nonpolar-
ized data were taken after the temperature had
been raised above the Curie Temperature,
then lowered without appplication of a
polarizing voltage.
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Figure 3. Change of nonlinearity parameter
as a function of temperature in K1-Polarized
and -Unpolarized PZT ceramic samples at
frequency 10 MHz.
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Figure 4. Frequency dependence of the
nonlinearity parameter J for different PZT
samples. Data points represent experimental
measurements. The lines are theoretical
prediction using the perturbation solution of
the dispersive nonlinear differential equation.

These results suggested that at least
one source of nonlinearity had been ignored.
The variation of nonlinearity with frequency
could be traced by an equation [9] of the form
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in which variation with frequency has been
included with the last two terms. The curves
in Fig. 4 actually are theoretical curves drawn
from Eq. 6.

32

SUMMARY

A large nonlinearity parameter may
result from nonlinear effects not considered
in the original equation. This is especially
true of non-crystalline solids. When this
happens it is important to trace down the
origin of the nonlinearity and to attribute the
nonlinearity to the proper physical origin.
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