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ABSTRACT

Developments in nonlinear acoustics are followed from gases to liquids to solids. For all
materials the nonlinearity parameter can be defined as the negative ratio of the coefficient of the
nonlinear term to the coefficient of the linear term in the nonlinear wave equation. With this
definition we can compare the nonlinear behaviors of gases, liquids, and solids. In gases

f3=r+1<==2. In liquids 6:::; f3= B +2 :::;14. In crystalline solids 3:::; f3= K3 +3 :::;15.
A Kz

The pure number p gives an impression of the nonlinearity to be expected in each instance.
However, recent measurements in solids such as rocks and PZT give a much larger nonlinear-
ity parameter. In this case, and similar ones, one must exercise care. Very large nonlinearity
parameters often can be explained by inc1uding previously ignored effects in the analysis. As
an introduction, the nonlinear behavior of PZT is diseussed.

INTRODUCTION

Early theoretical work on the propa-
gation of finite amplitude waves in an isen-
tropie gas was done by Stokes [1], Eamshaw
[2], and Riemann [3]. Various speciał
approximations and simplifieations are
intended to obtain a solution in spite of the
nonlinearity. In 1935 Thuras, Jenkins and
O'Neill [4] demonstrated unequivocally that
waveform distortion oeeurs in an air-filled
tube beeause of nonlinear effeets. Soon
thereafter it became neeessary to investigate
the propagation of finite amplitude waves in
liquids. In water, non1inear effects could be
studied using light diffraction. A plane
ultrasonic wave serves as a grating for the
light. As waveform distortion oecurs the
ultrasonic wave becomes a blaze grating and
the diffraction pattems become asymmetrical.

Diffraction patterns-produced by a 1.7 MHz
ultras onic wave [5] are shown in Fig. 1. The
progressive waveform distortion can be
followed as one inereases the amplitude or
the propagation distanee. Such waveform
distortion also occurs in solids, but its effect
is not as easy to demonstrate.

NONLINEAR DISTORTlON IN SOLIDS

We were able to demonstrate the
presenee of finite amplitude effects in alumi-
num [6] by measuring the presence of second
harmonie s of a 30 MHz fundamental ultra-
sonie wave. The fact that the amplitude of
the second harmonie was proportional to the
square of the fundamental amplitude was
evidence that nonlinear effects were the cause
of the second harmonie generation.
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Figure L Light diffraction by ultrasonic waves in water. f = 1.76 MHz.

The theoretical analysis for single
erystal solids eouId follow that for fluids,
provided the nonlinear equations describing
ultrasonic wave propagation in solids were
the same as those for fluids. This was true
for longitudinal wave propagation. (Shear
waves in solids do not couple to their second
hannonics in the first nonlinear terms, so
they can be ignored.) Our objective was to
evaluate coefficients of the nonlinear terms in
solids because they were a measure of the
deviation from the predictions of Hooke's
law.

THEORETICAL ANAL YSIS FOR FLUIDS
AND CRYST ALLINE SOLIDS

The non-dissipative equation de-
scribing the propagation of finite arnplitude
sound in an ideal gas is [7]

2 (Pu
;Yu co~

at2 - (1+ ~~J+J
where U is the particIe displacement, and Co
is the velocity of propagation of a smalI
amplitude wave. This equation can be

50

generalized by using an equation of state in
the form of a Taylor's series:

p=Po+AP-Po +B( p_Po)2+ ...
p, 2~. p,

This leads to an equation of the form
2 a2u

a2u = C0a7
at2 ( au)1+2

1+-ax
This equation is to be compared with an
equation resulting from the application of
elasticity to crystalline solids. If one uses
elasticity and keeps higher order terms one
obtains an equation of the form

(PU ((PU au a2u) au a2u
Po (Jt2 = K2 (Ja2 + 3Ta (Ja2 +s, (Ja (Ja2

=K2 a2u[I+(K3 +3)au]+ ...
(Ja2 K2 (Ja

where a is the distance in the propagation
direction and the expressions for K2 and K3
are given in Table L If one applies a bino-
mial expansion to the denominator in Eq. 3
and recognizes that c~ =~, then Eq. 3

Po

(1)

becomes

(2)

(3)

(4)



p d2U=Ad2~[1_(B+2)dU+ ... ] (5)
o dt2 dx A dX

These two equations have the same mat~e-
matical form. This means that a finite
amplitude ultrasonic wave in a solid behav~s
in the same way as a finite amI?litude wa.ve m
a fluid. The scaling factor 1S the rano of

-( ~: +3)tO (~ +2)' As long as other

processes do not et.tter in eit~er medium, we
can use the appropnate equation t~ defin~ the
nonlinearity parameter as the neganve rano of
the coefficient of the nonlinear term to the
coeficient of the linear term in the nonli~ear
wave equation. The appropriate e~presslOns
for the nonlinearity parameter m gases,
liquids, and solids are found in Table II.

EXPERIMENT AL RESULTS

We have used the harmonie genera-
tion technique to evaluate the nonlinearity
parameters of a number of crystalline. soli~s.
Our results indicate that the nonlinearity
parameter in erystalline solids ran~es f:om 3
to 15 (Aecording to reeent calculations n .may
be slightly larger than this in. cert~n sohds.)
Typical behavior of the nonhne~ty parame-
ter as a function of temperature m the [100]
direction in crystalline solids is shown in Fig.
2. One notices immediately that the results
for fused silica are different from those for
the other solids. Upon examination, ~ne
finds that fused silica is not truły a crystallme
solid.
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Figure 2. Nonlinearity parameter as a
function of temperature.

Direction ~ K
[100] Cli CIII

[110] Cli +C12 +2C44 CIII +3Cl12 +12CI64
2 4

(l/9)(C11,+6Cl12+
[Ill] ClI + 2Cl2 + 4C

44
12CI44+24C164+
2C124+ 16C456)

3

Table 1. Expressions for K2 and K3 for
longitudinal waves in cubic erystals.

Material c2 ~o
Gas yP y+1

Po
Liquid A

~+2-
Po A

Cubic Solid K2 K---.l +3

Po K2

Table II. SmalI amplitude sound velocity and
nonlinearity parameter in various media.

The exact reason for the behavior of fused
silica may be elusive, but I can eonfirm the
fact that the nonlinearity parameter is nega-
tive. We have examined harmonie generation
in fused siliea with a phase sensitive detector
[7] and found that our results are eonsistent
with a negative nonlinearity parameter. The
point really is that fused siIica is not a single
crystal.

We have examined the behavior of
another nonerystalline solid PZT and found
some equally interesting behavior [8]: In
Fig. 3 we show that the measured nonlmear-
ity parameter in one sample ~f PZT goes to
approsimately 1500 at the Cune Temper~ture.
Sueh behavior is far from that of a single
crystal. For this reason we examined the
frequeney dependence of the nonlinearity
parameter of two sarnples of PZT. The
results are shown in Fig. 4. The nonpolar-
ized data were taken after the temperature had
been raised above the Curie Temperature,
then lowered without appplication of a
polarizing voItage.
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Figure 3. Change ofnonlinearity parameter
as a function of temperature in Kl-Polarized
and -Unpolarized PZT ceramie sampIes at

frequency 10 MHz.
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Figure 4. Frequency dependence of the
nonlinearity parameter ~ for different PZT

sampIes. Data points represent experimental
measurements. The lines are theoretical

prediction using the perturbation soIution of
the dispersive nonlinear differential equation.

These results suggested that at least
one source of nonlinearity had been ignored.
The variation of nonlinearity with frequency
could be traced by an equation [9] of the form

a2u a2u au a2u
Po ar2 = K2 aa2 + (3K2 + K3) aa aa2

a4u au ro-r, aa4 -r, aa aa4 (6)
in which variation with frequency has been
included with the last two terms. The curves
in Fig. 4 actually are theoretical curves drawn
from Eq. 6.
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SUMMARY

A large nonlinearity parameter may
result from nonlinear effects not considered
in the original equation. This is especially
true of non-crystalline solids. When this
happens it is important to trace down the
origin of the nonlinearity and to attribute the
nonlinearity to the proper physical origin.
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