PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of modulation on heat transport by a weakly nonlinear thermal instability in the presence of applied magnetic field and internal heating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper deals with a weakly nonlinear stability problem under an imposed time-periodic thermal modulation. The temperature has two parts: a constant part and an externally imposed time-dependent part. We focus on stationary convection using the slow time scale and quantify convective amplitude through the real Ginzburg-Landau equation (GLE). We have used the classical fourth order Runge-Kutta method to solve the real Ginzburg-Landau equation. The effect of various parameters on heat transport is discussed through GLE. It is found that heat transport analysis is controlled by suitably adjusting the frequency and amplitude of modulation. The applied magnetic field (effect of Ha) is to diminish the heat transfer in the system. Three different types of modulations thermal, gravity, and magnetic field have been compared. It is concluded that thermal modulation is more effective than gravity and magnetic modulation. The magnetic modulation stabilizes more and gravity modulation stabilizes partially than thermal modulation.
Rocznik
Strony
96--115
Opis fizyczny
Bibliogr. 62 poz., rys., wykr.
Twórcy
  • Division of Mathematics Vignan's Foundation for Science, Technology and Research Guntur, Andhra Pradesh-522213, INDIA
autor
  • Department of Mathematics Chaitanya Bharathi Institute of Technology Hyderabad, Telangana-500075, INDIA
autor
  • Department of Mathematics Chaitanya Bharathi Institute of Technology Hyderabad, Telangana-500075, INDIA
autor
  • Faculty of Applied Sciences and Technology University Tun Hussein Onn Malaysia 84600, Pagoh, Muar, Johor, MALAYSIA
Bibliografia
  • [1] Yu C.P. and Shih Y.D. (1980): Thermal instability of an internally heated fluid layer in magnetic field. − Phy. Of Fluids, vol.23, pp.411-412.
  • [2] Thomson W. (1951): Thermal convection in a magnetic field.− Philos. Mag.,vol.42, pp.1417-1432.
  • [3] Chandrasekhar S. (1961): Hydrodynamic and Hydromagnetic Stability.− Oxford, UK: Oxford University Press.
  • [4] Venezian G. (1969): Effect of modulation on the onset of thermal convection. − J. Fluid Mech. vol.35, pp.243−254.
  • [5] Gershuni G.Z. and Zhukhovitskii E.M. (1963): On parametric excitation of convective instability. − J. Appl. Math. Mech., vol.27, No.5, pp.1197-1204.
  • [6] Rudraiah N. and Shivakumara I.S. (1984): Double-diffusive convection with an imposed magnetic field. − Int. J. Heat Mass Transfer, vol.27, pp.1825-1836.
  • [7] Bhadauria B.S. (2006): Time-periodic heating of Rayleigh–Benard convection in a vertical magnetic field. − Physica Scripta, vol.73, No.3, pp.296.
  • [8] Bhadauria B.S. (2007): Thermal modulation of Raleigh-Benard convection in a sparsely packed porous medium. − Journal of Porous Media, vol.10, No.2, pp.175–188.
  • [9] Kiran P., Manjula S.H. and Narasimhulu Y. (2018): Weakly nonlinear oscillatory convection in a viscoelastic fluid saturated porous medium with throughflow and temperature modulation.− Int. J. of Applied Mech. and Engg., vol.23, No., pp.635–653.
  • [10] Kiran P. and Bhadauria B.S. (2016): Weakly nonlinear oscillatory convection in a rotating fluid layer under temperature modulation. − J. of Heat Transf., vol.138, pp.051702.
  • [11] Bhadauria B.S., Bhatia P.K. and Debnath L. (2009): Weakly non-linear analysis of Rayleigh–Benard convection with time periodic heating. − Int. J. of Non-Linear Mechanics, vol.44, No.1, pp.58-65.
  • [12] Kiran P and Bhadauria B.S (2015): Chaotic convection in a porous medium under temperature modulation. − Transp. Porous Media, vol.107, pp.745–763.
  • [13] Manjula S.H., Kiran P. and Narasimhulu Y. (2018): Heat transport in a porous medium saturated with variable viscosity under the effects of thermal modulation and internal heating.− Int. J. of Emerging Tech. and Innovative Res. vol.5, pp.59−75.
  • [14] Bhadauria B.S. and Kiran P. (2013): Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under temperature modulation. − Transport in Porous Media, vol.100, No.2, pp.279-295.
  • [15] Bhadauria B.S. and Kiran P. (2014): Weak nonlinear double diffusive magneto-convection in a Newtonian liquid under temperature modulation. − Int. J. Eng. Math., vol.2014, pp.01-14.
  • [16] Kiran P. and Narasimhulu. Y. (2018): Weak nonlinear thermal instability in a dielectric fluid layer under temperature modulation. − Int. Journal of Advanced Research Trends in Engineering and Tech., vol.5, pp.470-476.
  • [17] Bhadauria B.S. and Kiran P. (2014): Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under temperature modulation. − Int. J. Heat Mass Transfer, vol.77, pp.843-851.
  • [18] Bhadauria B.S. and Kiran P. (2014): Heat and mass transfer for oscillatory convection in a binary viscoelastic fluid layer subjected to temperature modulation at the boundaries.− Int. Commun. Heat Mass Transfer, vol.58, pp.166-175.
  • [19] Kiran P., Bhadauria B.S. and Narasimhulu Y. (2016): Nonlinear throughflow effects on thermally modulated rotating porous medium. − J. of Applied Nonlinear Dynamics, vol.6, pp27-44.
  • [20] Gresho P.M. and Sani R.L. (1970): The effects of gravity modulation on the stability of a heated fluid layer. − J.Fluid Mech., vol.40, pp.783-806.
  • [21] Clever R., Schubert G. and Busse F.H. (1993): Two dimensional oscillatory convection in a gravitationally modulated fluid layer.− J. Fluid Mech., vol.253, pp.663-680.
  • [22] Bhadauria B.S. and Kiran P. (2014): Weak nonlinear oscillatory convection in a viscoelastic fluid layer under gravity modulation. − Int. J. Nonlinear Mech., vol.65, pp.133−140.
  • [23] Bhadauria B.S. and Kiran P. (2014): Weak nonlinear oscillatory convection in a viscoelastic fluid saturated porous medium under gravity modulation. − Transp. Porous Media, vol.104, pp.451−467.
  • [24] Bhadauria B.S. and Kiran P. (2015): Chaotic and oscillatory magneto-convection in a binary viscoelastic fluid under G-jitter. − Int. J. Heat Mass Transf., vol.84, pp.610-624.
  • [25] Kiran P. (2020): G-jitter effects on chaotic convection in a fluid layer. − Condensed Matter Physics. pg 01-23. DOI:http://dx.doi.org/10.5772/intechopen.90846.
  • [26] Kiran P. (2015): Throughflow and g-jitter effects on binary fluid saturated porous medium. − Applied Math and Mech., vol.36, No.10, pp.1285-1304.
  • [27] Kiran P. and Narasimhulu Y. (2017): Centrifugally driven convection in a nanofluid saturated rotating porous medium with modulation. − J. of Nanofluid, vol.6, No.1, pp.01–11.
  • [28] Kiran P., Manjula S.H. and Narasimhulu Y. (2018): Oscillatory convection in a rotating fluid layer under gravity modulation. − J of Emerging Tech and Innovative Res., vol.5, No.8, pp.227−242.
  • [29] Manjula S.H. and Kiran P. (2020): Throughflow and gravity modulation effects on double diffusive oscillatory convection in a viscoelastic fluid saturated porous medium.− Adv. Sci. Eng. Med., vol.12, No.3, pp.01-10.
  • [30] Aniss S., Brancher. J.P. and Souhar M. (1993): Thermal convection in a magnetic fluid in an annular Hele-Shaw cell. − J. Magn. Magn. Mater., vol.122, pp.319-322.
  • [31] Aniss S., Souhar M. and Brancher J.P. (1999): Thermal convection in a magnetic fluid in an annular Hele-Shaw cell. − Int. J. Heat Mass Transfer, vol.42, pp.61-72.
  • [32] Bhadauria B.S. and Kiran P. (2014): Weak nonlinear thermal instability under magnetic field modulation.− Phys. Scr.,vol.89, pp.095209.
  • [33] Kiran P., Bhadauria B.S. and Narasimhulu Y. (2018): Oscillatory magneto-convection under magnetic field modulation. − Alexandria Eng. J., vol.57, pp.445-453.
  • [34] Tveitereid M. and Palm E. (1976): Convection due to internal heat sources. − J. of Fluid Mech., vol.76, pp.481-499.
  • [35] Tveitereid M. and Palm E. (1978): Thermal convection in a horizontal fluid layer with internal heat sources. − Int. J. of Heat and Mass Transfer, vol.21, pp.335-339.
  • [36] Takashima M. (1989): The stability of natural convection in an inclined fluid layer with internal heat generation. − J. Physical Society of Japan ,vol.58, pp.4431-4440.
  • [37] Tasaka Y. and Takeda Y. (2005): Effects of heat source distribution on natural convection induced by internal heating. − Int. J. of Heat and Mass Transfer, vol.48, pp.1164-1174.
  • [38] Bhadauria B.S., Hashim I. and Siddheshwar P.G. (2013): Effects of time-periodic thermal boundary conditions and internal heating on heat transport in a porous medium. − Transport in Porous Media, vol.97, No.2, pp.185-200.
  • [39] Bhadauria B.S. and Kiran P. (2014): Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source. − Ain Shams Engineering Journal, vol.5, No.4, pp.1287-1297.
  • [40] Bhadauria B.S., Singh M.K., Singh A., Singh B.K. and Kiran P. (2016): Stability analysis and internal heating effects on oscillatory convection in a viscoelastic fluid saturated porous medium under gravitation modulations. − Int. J. Appl. Mech. Eng., vol.21 pp.785-803.
  • [41] Kiran P. and Narasimhulu Y. (2018): Internal heating and thermal modulation effects on chaotic convection in a porous medium. − Journal of Nanofluids, vol.7, No.3, pp.544-555.
  • [42] Kiran P. (2016): Nonlinear throughflow and internal heating effects on vibrating porous medium.− Alexandria Engineering J., vol.55, pp.757-767.
  • [43] Rao A., Srinivasa J. and Raju R. (2010): Applied magnetic field on transient free convective flow of an incompressible viscous dissipative fluid in a vertical channel. − Journal of Energy, Heat and Mass Transfer, vol.32, No.3, pp.265-277.
  • [44] Keshri Om P., Gupta V.K. and Kumar A. (2018): Study of weakly nonlinear mass transport in Newtonian fluid with applied magnetic field under concentration/gravity modulation. − Nonlinear Engineering Modeling and Application, vol.8, pp12-20.
  • [45] Kiran P. (2020): Concentration modulation effect on weakly nonlinear thermal instability in a rotating porous medium. − J. of Applied Fluid Mech., vol.13, pp.01-13.
  • [46] Malkus W.V.R. and Veronis G. (1958): Finite amplitude cellular convection. − J. Fluid Mech., vol.4, No.3, pp.225−260.
  • [47] Manjula S.H., Kiran P., Bhadauria B.S. and Reddy RR. (2020): The complex Ginzburg landau model for an oscillatory convection in a rotating fluid layer. − Int. J. of Applied Mechanics and Engineering, vol.25, pp.75-91.
  • [48] Kiran P. and Manjula S.H. (2020). Weakly nonlinear mass transfer in an internally soluted and modulated porous layer.− Adv. Sci. Eng. Med., vol.12, No.3, 01-10. doi:10.1166/asem.2020.2566.
  • [49] Kiran P., Bhadauria B.S. and Roslon R.(2020): The effect of throughflow on weakly nonlinear convection in a viscoelastic saturated porous medium.− J. of Nanofluid, vol.8, pp.01-11.
  • [50] Kiran P., Bhadauria B.S. and Narasimhulu Y. (2017): Weakly nonlinear and nonlinear magneto-convection under thermal modulation. − J. of Applied Nonlinear Dynamics, vol.6, No.4, pp.487-508.
  • [51] Kiran P. and Bhadauria B.S. (2015): Nonlinear throughow effects on thermally modulated porous medium. − Ain Shams Eng. J., vol.7, No.1, pp.473-482.
  • [52] Kiran P. (2016): Throughflow and gravity modulation effects on heat transport in a porous medium. − J. of Applied Fluid Mech., vol.9, No.3, pp.1105-1113.
  • [53] Kiran P., Manjula S.H. and Roslan R. (2020): The effect of gravity modulation on double diffusive convection in the presence of applied magnetic field and internal heat source.− Adv. Sci. Eng. Med., vol.12, pp.01–13. doi:10.1166/asem.2020.2576.
  • [54] Bhadauria B.S., Singh M.K., Singh A., Singh B.K. and Kiran P. (2016): Stability analysis and internal heating effect on oscillatory convection in a viscoelastic fluid saturated porous medium under gravity modulation. − Int. J. of Applied Mechanics and Eng., vol.21, No.4, pp.785-803.
  • [55] Bhadauria B.S. and Kiran P. (2015):Weak nonlinear double diffusive magneto-convection in a Newtonian liquid under gravity modulation. − J. of Applied Fluid Mech., vol.8, No.4, pp.735-746.
  • [56] Kiran P. (2015): Nonlinear thermal convection in a viscoelactic nanofluid saturated porous medium under gravity modulation. − Ain Shams Eng. J., vol.7, pp.639-651.
  • [57] Kiran P. (2016): Throughflow and non-uniform heating effects on double diffusive oscillatory convection in a porous medium. − Ain Shams Eng. J., vol.7, pp.453-462.
  • [58] Kiran P. and Manjula S.H. (2020): Weakly nonlinear mass transfer in an internally soluted and modulated porous layer. − Adv. Sci. Eng. Med., vol.12, pp.622–631.
  • [59] Manjula S.H. and Kiran P. (2020): Throughflow and gravity modulation effects on double diffusive oscillatory convection in a viscoelastic fluid saturated porous medium. − Adv. Sci. Eng. Med., vol.12, pp.612-621.
  • [60] Manjula S.H., Kiran P. and Ganeshwar M.R. (2020).The effect of thermal modulation on double diffusive convection in the presence of applied magnetic field and internal heat source. − Int. J. of Applied Mechanics and Engineering, vol.25, pp.01-28. Accepted.
  • [61] Kiran P., Bhadauria B.S. and Kumar V. (2016): Thermal convection in a nanofluid saturated porous medium with internal heating and gravity modulation. − J. of Nanofluid, vol.5, pp.328-339.
  • [62] Kiran P., Manjula S.H., Suresh and Raj Reddy P. (2020): The time periodic solutal effect on oscillatory convection in an electrically conducting fluid layer.− AIP Conf. Proce, 2261, pp.030004. doi.org/10.1063/5.0016964.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba069997-8480-46e5-bf83-99e14aa90952
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.