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Abstract —Sufficient conditions are given under which the controllability and observability of linear electrical circuits is
independent of their resistances. In some particular cases the observability depends only on the capacitances or inductances of

the electrical circuits.
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INTRODUCTION

The notion of controllability and observability and the
decomposition of linear systems have been introduced by
Kalman [9, 10]. These notions are the basic concepts of the
modern control theory [1, 3, 8, 11-13]. They have been also
extended to positive linear systems [2, 4, 6, 7]. It is well-
known that the controllability and observability of linear
systems are generic properties of the systems [11].

A dynamical system is called positive if its trajectory
starting from any nonnegative initial condition state remains
forever in the positive orthant for all nonnegative inputs. An
overview of state of the artin positive system theory is given
in the monographs [2, 4, 6, 7] and in the paper [5]. Models
having positive behavior can be found in engineering,
economics, social sciences, biology and medicine, etc.

In this paper the independence of the controllability and
observability of linear electrical circuits of their resistances
will be addressed.

The paper is organized as follows. In Section 1 the basic
definitions and theorems concerning the controllability and
observability are recalled. Sufficient conditions for the
independence of the controllability and observability of
linear electrical circuits of their resistances are presented in
Section 2 and illustrating example of electrical circuit is given
in Section 3. Concluding remarks are given in Section 4.

The following notation will be used: SR -the set of real

numbers, R _thesetof XM real matrices, ‘RT’"

- the set of 72X real matrices with nonnegative entries

and R} = ‘RT' , M

matrices (real matrices with nonnegative off-diagonal

, - the set of NIXH Metzler

entries), 1 ,, ~the 11X 71 identity matrix.
|. CONTROLLABILITY AND OBSERVABILITY OF LINEAR
ELECTRICAL CIRCUITS

Consider the linear continuous-time electrical circuit
described by the state equations
x(t) = Ax(t)+ Bu(t), (1a)
(1) = Cx(t) + Du(o), (1b)

where x(t) € R, u(t) e R", y(t) e R? are
the state, input and output vectors and AeR™" ,
BeR™", CeRP", DeRP".

It is well-known [7] that any linear electrical circuit
composed of resistors, coils, capacitors and voltage (current)
sources can be described by the state equations (1). Usually

as the state variables X; (¢),..., X, (t) (the components
of the state vector X(#)) the currents in the coils and

voltages on the capacitors are chosen.
Definition 1. [7] The electrical circuit (1) is called

(internally) positive if x(¢) € ‘Rﬁ and Y(t) € ‘Rf ,

t €[0,400) for any xy=x(0)e ‘Rﬁ and every

u(t) e Ry, [0,+00).
Theorem 1. [7] The electrical circuit (2) is positive if and
onlyif
AdeM,, BeR™, CeRP", DeRP". (2



Theorem 2. [7] The linear electrical circuit composed of
resistors, coils and voltage sources is positive for any values
of the resistances, inductances and source voltages if the
number of coils is less or equal to the number of its linearly
independent meshes and the direction of the mesh currents
are consistent with the directions of the mesh source
voltages.

Theorem 3. [7] The linear electrical circuit composed of
resistors, capacitors and voltage sources is not positive for all
values of its resistances, capacitances and source voltages if
each its branch contains resistor, capacitor and voltage
source.

Theorem 4. [7] The R, L, C, e electrical circuits are not
positive for any values of its resistances, inductances,
capacitances and source voltages if at least one its branch
contains coil and capacitor.

Definition 2. [7] The electrical circuit (1) (or the pair (A,B))

is called controllable (in the time [O,tf-] > 0 )ifthere
existsaninput u(¢) € R", te [O,tf-] which steers the

state of the system fromiinitial state X, € R" to any given
final state x , € R ie. x(tf-) =X/

Theorem 5. [7] The electrical circuit (1) is controllable in
time [O,If-] if and only if

rank[[ns -4 B] =n for seC. (3)
Definition 3. [7] The electrical circuit (2) (or the pair (A,C))
is called observable (in the time [O,tf-] , tf- >0)ifitis

possible tofind unique initial state X, € R of the system
knowing its input u(?) eR™ and its

y(t)eR?, te[0,t,].
Theorem 6. [7] The electrical circuit (1) is controllable in
time [O,If-] if and only if

output

C
rankL s—A}:n for seC. (4)

n

Il. INDEPENDENCE OF THE CONTROLLABILTY AND
OBSERVABILITY
In this section sufficient conditions for the independence
of the controllability and observability of the linear electrical
circuits of their resistances will be presented.
Consider the linear electrical circuit shown in Figure 1

with given resistances Rk , k=1,...,13 , inductances

L;,i=1,23,4,capacitances Cj ,j=1,2,3,4and

10

source voltages € ; , j=1234.
R; L; C; R> L (>

ey ez
i i
Rs Rio
is is
i3
ez Ri3 R
3 usz Uy
- - 14

Rs L3 ( e C; L+
Fig. 1. Electrical circuit

It is well-known that the number of linearly independent
meshes 7, of the linear electrical circuit is given by the
formula

n, =n,—n,+1, (5)
where 71, is the number of branches and 71, is the

number of the nodes of the electrical circuit.

The linear independent meshes of the electrical circuit
will be divided into following two classes: external and
internal meshes.

Definition 4. Linearly independent mesh is called
external if it contains only one branch with resistance,
inductance, capacitance and source voltage and branches
with only resistances. Linearly independent mesh is called
internal if it contains only resistances.

Using the Kirchhoff’s laws we may write for the external
meshes the equations

di =
e =1L d—t]+u] + Ryiy — Rsiy — Ryis,

di = . . .
e, =1L, th +uy + Ryiy — Rsiy — Ry,

g (6a)
iy = . .
e =1L, E +usy + Ryiy — Ryjis — Ryziy,
di —
e, =1L, 7;‘+u4 + Ryiy — Ri5iy — Ryyig
and for external meshes
Risis —Ryig — Ry —Ryji; =0, (6b)
Ryig — Rols — Ryiy = Rypiy =0,
where
R =R +Rs+Rs, Ry=R,+Rs+R,,
Ry =Ry +R | +R3 Ry=R,+R,+Rj3, (60)

Ry=Rg+Ry+Ry+ Ry, Rg=R,+Ry+Ry+Ry,

The currents in capacitors and their voltages are related
by
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du
i, =C,—%, k=1234. 7
=G )
From the equations (6a) we have
T r g _
s 0 0
L L -
i R R i
1 K5 _n 0 0 1
dl|i _ L, L, 53
dt| i 0 0o B R
iy Ly Ly iy
0 0 Ry R
L L, L,
R
LI
o Bl
+ Ly )%
Ry 0 is
L3
0 R
3 N _ 8)
— 0 0 0
L, ~
u,
o L oo o™
_ L, U2
0 0 L o|m
L Ly
o 0 0 —
L Ly ]
- -
— 0 0 0
L N
1 e
— 0 o]
+ Ly 1 @
00 — 0%
Ly Les
0 0 0 L
L Ly
and from (6b)

. — -1 .
is| | R Ry Re 0 Ry 0 |4 )
io] |-Ry R 0 R, 0 Ry|if

Substitution of (9) into (8) yields

d|u u
— .14 =4 .14 + Beyy, (10a)
dr| iy Ly
where
U iy €
U, . iy e,
Uy , Gy = e s (10b)
u3 I3 3
Uy iy ey

0 0 0 0 0 0 0
G
0 0 0 0 0 £ 0 0
G
0 0 0 0 0 0 L 0
&}
0 0 0 0 0 0 0 L
_ - G
Loy 0 o Ru Ry R Ry
L L L L L
Loy o R Ry Rz Ry
Ly Ly, L, L, L
0 o -L ¢ R Ry Ry R
L3 L L3 Lz L
o o o L Ry Ry Ry Ryl (109
| Ly Ly Ly Ly Iy
[0 0o o 0]
0 0 0 0
0 0 0 0
0 0 0 0
L 0 0 0
p=|h !
0o — 0 0
Ly
1
0 o — 0
Ly
0 0 0 L
L Ly |
and
RII RIZ R|3 R|4
R= Ry Ry Ry3 Ry,
Ry Ry Ry Ry
Ry Ry Rz Ry
[-R, R 0 0
|R -R 0 0
0 0 -R R,
= (10d)
lo o R, -R
Ry 0 .
O R R R
RII 0 _R’i Rf!
0 R,

Ry, 0 R, O
X
0 R, 0 R,

The electrical circuit described by (10a) is not positive

since its matrix 4 defined by (10c) is not a Metzler matrix.

Theorem 7. The controllability of linear electrical circuits

isindependent of their resistances if the number 71, of their

external meshes satisfies the condition

n, <n,, (11)

where 7, is defined by (5).
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Proof. To simplify the notation the proof will be given for
the electrical circuit shown in Figure 1. In this case we have

n, = 13, ny = 8 and n,= 4 . Therefore, the

condition (11) is satisfied since n,, > n,. Using the
condition (3) of Theorem 5 to the matrices (10c) we obtain
(12) for s € C . The condition (12) is satisfied for all values
of the resistances of the electrical circuit. Therefore, the
controllability of the linear electrical circuit is independent of
its resistances.

Theorem 8. The controllability of linear electrical circuits
depends only on their inductances and capacitances if each
branch with inductance contains also source voltage.

Proof. Note that if each branch with inductance contains
also source voltage then to each row in the matrix A with
resistances we have a nonzero entry in corresponding row in
the matrix B . In this case using elementary column
operations it is possible to eliminate in the matrix
[1,s—A B] entries with the resistances.

Now the observability of the linear electrical circuit
shown in Figure 1 will be analyzed for the following three
cases:

casel. C=[C, 0]e R*®, detC, #0.
case2. C=[0 C,]e R*®, detC, 0.
case3. C=[C;, C,|eR*®, rankC=4.

In Case 1 we have the following theorem.

Theorem 9. In Case 1 the observability of linear electrical
circuits is independent of their resistances and inductances
if the condition (11) is satisfied.

Proof. Using the condition (4) of Theorem 6 to the matrix
A defined by (15) and C = [C] 0] , detC; #0 we
obtain

¢ 0
rank{ ¢ }=rank ILis —-F |=8
Igs—A G Is-K (12)
for detC, #0, detF #0,

12

where
L 0 0 0
G
0 L 0 0
F= =
0 0 l 0
C3
0 0 o0 -
Cy
_’1 iy (13)
— 0 0 0
LI
1
o — 0 o0
G= L
0 0 l 0
L3
1
o 0 0 —
L Ly |

and the matrix R is defined by (10d).

The condition (12) is satisfied for all values of the
resistances and inductances of the electrical circuit.
Therefore, the observability of the linear electrical circuits in
Case 1 is independent of their resistances and inductances if
the condition (11) is satisfied.

Theorem 10. In Case 2 the observability of linear
electrical circuits is independent of their resistances and
capacitances if the condition (11) is satisfied.

Proof. Using the condition (4) of Theorem 6 to the matrix

A defined by (10c) and c=[o c,]. detC, 20 we
obtain

c 0 C,
rankL A} =rank| I,s —F |=8 "
8 G ILis—-R (14)

for detC, #0, detG=0.

The condition (14) is satisfied for all values of the
resistances and capacitances of the electrical circuit.
Therefore, the observability of the linear electrical circuits in
Case 2 is independent of their resistances and capacitances
if the condition (11) is satisfied.

Theorem 11. In Case 3 the observability of linear
electrical circuits is independent of their resistances and
capacitances if the condition (11) is satisfied.

Proof. The proof is similar to the proofs of Theorems 9
and 10.
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lll. ExAMPLE
Consider the linear electrical circuit shown in Figure 2
with given resistances R, k=1,...,6, inductances

L;, i=1,2,3, capacitances Cj , j=1,2,3 and

source voltages € ; , j=1273.

Lj (;1" 1‘[ C? R2 [‘2
R W o L
vz
ej Rs l e
VWA WA
R3 €3 L C; 1%

—
usz

Fig. 2. Electrical circuit

Using the Kirchhoff's laws we may write the equations

i
e, = Li—L+ Ry ji; — Ryiy — Rsiy +1ty,
dt ‘
di, . ) )
e, =1L, 7+ Ryyiy — Ryiy — Riz + 1y, (15a)
di
€3 = Ly —>+ Rysiy — Rsiy — Reiy +3,
3= Lt Raa 3
where
R,=R +R,+Rs, Ryy=R,+R,+R,,
11 1 4 5 22 2 4 6 (15b)

Ry3 = Ry + Rs + Ry
The currents in capacitors and their voltages are related
by

duy,

=Gty k=123, (16)

The equations (15) and (16) can be written in the form

s 0 0 0 L 0
G
0O s 0 0 0 L
G
0o 0 s 0 0 0
0o 0 0 =« 0 0
rank[lss -4 B] = rank] 1 0 0 o s R, _E
L L L
0 S 0 0 Ry 5o Ry
L, L, L,
0 1 Ry Ry
Ly L L
0 0 1 Ry Ry
L L, L, L,

dlu u
Z1B 44" |+ Beps, (17a)
dt| i i3
where
U i €
uz=|uy |, h3=|i |, e3=|ep|, (17b)
L&) i3 5]
c 1 .
0 0 0 — 0 0
G
1
0 0 0 0 — 0
G
1
0 0 0 0 0 —
A= G
L 0 0 Ry Ry BT
LI LI LI LI
0 _ b Ry Ry R
LZ LZ LZ LZ
0 0 L R R Rs3 (17¢)
L Ly Ly Ly Ly |
[0 0 0]
0 0 0
0 0 0
1
— 0 0
B= L
0 L 0
LZ
1
0 0 —
L Ly |

Note that in this case we have n, = 6, n,= 4,

n,= 3 and n,=mn, . Therefore, the electrical circuit
has only external meshes. The electrical circuit is not positive

since its matrix A4 is not a Metzler matrix.
The electrical circuit is controllable since we have (18)

and the controllability is independent of its resistances Rk
L k=1,...,6.

The following three cases of the choice of the output
matrix C of the electrical circuit will be considered:

0 0 o 0 0 0
0 0 o 0 0 0
1
-— 0 o 0 0 0
G
0 _CL o 0 0 0
— —4 -
_ﬁ _ﬁ L 0 0 0 8 (12)
L L L
Ros _ R 0 1 0o 0
L L L
EL RN TR Y LI
T L
Ry s _@ 0 0 -
Ly L, Ly

13



1 01000 In Case 2 using the condition (4) we obtain
Case 1.
=01 20 00
000001 and €
0001 10 fos =4
CaseZ.C_O 0001 ol [0 0 0 1 1 0 ]
B 0 0 0 0 1 0
000001 0C 0 0 o 0 1
Case 3. 1 000 0 . s 0 0 —F] 0 0
cC=/01 0 0 0 1 1
000100 0 s 00y 0
= rank| 0 0 s 0 0 7% =6 (20)
In Case 1 using the condition (4) we obtain 1 R R R3
— 0 0 s+ 4 5
¢ L L L L
rank| ) | R R R
Igs—A 1y R R 6
1 0 1 0 0 0 ] Lk F
0 — -5 6 B3
0 1 2 0 0 0 | L3 L L L |
0 0 0 o 0 1 for Lp=0, k=123
s 0 0 7? 0 0
1
1 Therefore, the electrical circuit is observable and its
0 s 0 -—— 0 .. L. . .
C, observability is independent of its resistances and
=rank o o 0 0 _1 = (19) capacitances. In Case 3 using the condition (4) we obtain
&}
Lo o ssfu B & c
L L L L rank]
1 Ry Ry Re lgs—4
— 0 —— s+—== —-— r B
Ly Ly Ly Ly 10 0 0 1 0
o o L _B _Re Ry 0 1 0 0 0 1
L Ly Ly Ly Ly | 0 0 0 1 0 0
for Cp#0, k=12,3. s 0 0 L 0 0
G
0 s 0 0 L 0
G (21)
Therefore, the electrical circuit is observable and its srankl o0 o0 0 0 _ L |=e6
observability is independent of its resistances and | R R %
) 4
inductances. I 0 0 s L]]] ? -Tf
1 Ry Rn _Re
Ly Ly Ly Ly
0 1B R Ry
L L3 L3 L3 L3 |

rank[16.§ —A B] = rank

14

for Ly #0, Cp#0, k=123.

1 R
- 0 0 0 0 0
G
1
0 -— 0 0 0 0
G
0 0 —Ci 0 0 0
3 =3 1
sef R BT, 18)
L L Ly | 4
R R Ry L
LZ LZ LZ LZ
R R (B 1
Ly Ly Ly Ls_
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Therefore, the electrical circuit is observable and its
observability is independent only of its resistances.

It is well-known [7] that the linear electrical circuits are
not positive if at least one of their branch contains
resistance, inductance and capacitance. The linear electrical
circuits analyzed in this paper belong to this class. Therefore,
we have the following conclusion.

Conclusion 1. The linear electrical circuits analyzed in this
paper are not positive.

IV. CONCLUDING REMARKS

The independence of the controllability and
observability of resistances, inductances and capacitances of
linear electrical circuits has been investigated. Sufficient
conditions have been given:

for the independence of the controllability of linear
electrical circuits of their resistances (Theorems 7 and 8);

for the independence of the observability of linear
electrical circuits of their resistances and inductances
(Theorem 9), of their resistances and capacitances (Theorem
10) and of their resistances (Theorem 11).

It is shown that the electrical circuits satisfying the
sufficient conditions are not positive electrical circuits
(Conclusion 1).

The considerations have been illustrated by examples of
linear electrical circuits.

(1
(2]
(3]
(4]
(5]

(6]
(7]

8]
E)

(10]

(11]
(12]

(13]

BIBLIOGRAPHY

Antsaklis P.J., Michel AN, Linear Systems, Birkhauser, Boston,
2006.

Farina L., Rinaldi S. Positive Linear Systems; Theory and
Applications, J. Wiley, New York, 2000.

Kaczorek T., Linear Control Systems, Vol. 1, J. Wiley, New York,
1993.

Kaczorek T., Positive 1D and 2D systems, Springer-Verlag,
London, 2001.

Kaczorek T., Reachability and controllability to zero tests for
standard and positive fractional discrete-time systems, Journal
Europeen des Systemes Automatises, JESA, vol. 42, no. 6-8,
2008, pp. 770-781

Kaczorek T., Selected Problems of Fractional Systems Theory,
Springer-Verlag, Berlin, 2012.

Kaczorek T., Rogowski K., Fractional Linear Systems and Electrical
Circuits, Studies in Systems, Decision and Control, vol. 13,
Springer, 2015.

Kailath T., Linear Systems, Prentice-Hall, Englewood Cliffs, New
York, 1980.

Kalman R.E., Mathematical Descriptions of Linear Systems, SIAM
J. Control, vol. 1, 1963, pp. 152-192.

Kalman R.E, On the General Theory of Control Systems, Proc. Of
the First Intern. Congress on Automatic Control, Butterworth,
London, 1960, pp. 481-493.

Klamka J., Controllability of Dynamical Systems, Kluwer
Academic Publ., Dordrecht, 1991.

Rosenbrock H., State-Space and Multivariable Theory,
J. Wiley, New York, 1970.

Zak S.H., Systems and Control, New York, Oxford University
Press, 2003.

15



16



