PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Insulation against Contact Heat, Radiant Heat and Sensory Comfort of Basalt Fabric-Based Composites with Parylene C Coating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article concerns research on using Parylene C coating on basalt fabric-based composites with potential use in protective clothing to improve their insulation against contact heat and radiant heat, as well as the sensory comfort of the user. The outcomes of the contact heat method showed that applying Parylene C coating improved the thermal insulation of all tested composites. Two of them achieved the first efficiency level of protection. The results of the radiant heat method presented that using the Parylene C coating did not cause changes in the thermal insulation against heat radiation of all tested materials; the radiant heat transfer index reached values in the range of 12.4 - 12.9 s. X-ray tomography (micro-CT) allowed for identifying breaks/snaps in basalt fibers irritating the user’s skin in direct contact with the composite. Micro-CT results also showed that using Parylene C coating eliminated the effect of skin irritation and increased the usability of basalt fabrics in clothing.
Słowa kluczowe
Rocznik
Strony
99--108
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, 116 Zeromskiego St., 90-543 Lodz, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, 116 Zeromskiego St., 90-543 Lodz, Poland
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Material Science of Textiles and Polymer Composites, 116 Zeromskiego St., 90-543 Lodz, Poland
  • Lodz University of Technology, Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, 1/15 Stefanowskiego St., 90-924 Lodz, Poland
Bibliografia
  • 1. V.P. Kumbhar, An overview: Basalt rock fibers - New construction material, Acta Eng. Int. 2014, Vol. 2, No. 1, p. 11-18.
  • 2. H. Jamshaid, R. Mishra, A green material from rock: Basalt fiber - A review, J. Text. Inst. 2016, Vol. 107, No. 7, p. 923-937.
  • 3. T. Ayub, N. Shafiq, S.U. Khan, Compressive stress-strain behavior of HSFRC reinforced with basalt fibers, J. Mater. Civ. Eng. 2016, Vol. 28, No. 4, 06015014.
  • 4. H. Liu, Y. Yu, Y. Liu, M. Zhang, L. Li, L. Ma, Y. Sun, W. Wang, A Review on basalt fiber composites and their applications in clean energy sector and power grids, Polymers 2022, Vol. 14, No. 12, p. 1-20.
  • 5. A. Chelliah, Mechanical properties and abrasive wear of different weight percentage of TiC filled basalt fabric reinforced epoxy composites, Mater. Res. 2019, Vol. 22, No. 2, e20180431.
  • 6. J. Militký, V. Kovacic, V. Bajzík, Mechanical properties of basalt filaments, Fibers Text. East. Eur. 2007, Vol. 15, No. 5-6, p. 49-53.
  • 7. M.A.A. El-Baky, M.A. Attia, M.M. Abdelhaleem, M.A. Hassan, Flax/basalt/E-glass fibers reinforced epoxy composites with enhanced mechanical properties, Journal of Natural Fibers 2022, Vol. 19, No. 3, p. 954-968.
  • 8. Z. Li, J. Ma, H. Ma, X. Xu, Properties and applications of basalt fiber and its composites, IOP Conf. Ser. Earth Environ. Sci. 2018, Vol. 186, p. 1-7.
  • 9. V. Fiore, T. Scalici, G. Di Bella, A. Valenza, A review on basalt fibre and its composites, Compos. Part B-Eng. 2015, Vol. 74, p. 74-94.
  • 10. G. Song, S. Mandal, R. Rossi (Eds.), Thermal protective clothing for firefighters, Woodhead Publishing Series in Textiles, Elsevier, Amsterdam 2017.
  • 11. Q.Q. Zhou, X.P. Liang, J. Wang, H. Wang, P. Chen, D. Zhang, S.M. Yang, J.X. Li, Preparation of activated aluminum-coated basalt fiber mat for defluoridation from drinking water, J. Sol-Gel Sci. Technol. 2016, Vol. 78, No. 2, p. 331-338.
  • 12. P. Miśkiewicz, I. Frydrych, M. Tokarska, W. Pawlak, Study on some thermal and electrical properties of basalt fabric modified with metal and ceramics as a result of magnetron sputtering, Polymers 2019, Vol. 11, No. 12. p. 1-15.
  • 13. Y. Liu, Y. Yu, H. Du, The influence of two types of functional particles on the electromagnetic properties and mechanical properties of double-layer coated basalt fiber fabrics, Textile Research Journal 2022, Vol. 92, No. 15-16, p. 2591-2604.
  • 14. T. Kolar, V. Kokol, Synergistic effect of screen-printed single-walled carbon nanotubes and phosphorylated cellulose nanofibrils on thermophysiological comfort, thermal/UV resistance, mechanical and electroconductive properties of flame-retardant fabric, Materials (Basel) 2021, Vol. 14, No. 23, p. 1-23.
  • 15. A.K. Puszkarz, W. Machnowski, Simulations of heat transfer through multilayer protective clothing exposed to flame, Autex Res. J. 2022, Vol. 22, No. 3, p. 298-304.
  • 16. M. Renard, A.K. Puszkarz, Modeling of heat transfer through firefighters multilayer protective clothing using the computational fluid dynamics assisted by X-ray microtomography and thermography, Materials 2022, Vol. 15, No. 15, p. 1-17.
  • 17. C. Watson, O. Troynikov, H. Lingard, Design considerations for low-level risk personal protective clothing: a review, Industrial Health 2019, Vol. 57, p. 306-325.
  • 18. J.Y. Xu, Y.C. Sun, X.X. Li, R.X. Chen, Influence of layer configuration on protecting effect of thermal protective clothing containing PCM, In: Silk, Protective Clothing and Eco-Textiles, L. Bai, G.-Q. Chen (Eds.), Trans Tech Publications Ltd, Stafa-Zurich 2013, p. 639-642.
  • 19. K. Wang, C. Fu, A. Xu, M. Wu, L. Jia, W. Xu, B. Su, Z. Xia, Skin-friendly and highly fireproof fabric up to 1142 °C weaved by basalt @ polyimide yarns, Composites Part B: Engineering 2022, Vol. 246, p. 1-9.
  • 20. P. Miśkiewicz, M. Tokarska, I. Frydrych, M. Makówka, Assessment of coating quality obtained on flame-retardant fabrics by a magnetron sputtering method, Materials 2021, Vol. 14, No. 6, p. 1-11.
  • 21. P. Miśkiewicz, I. Frydrych, W. Pawlak, A. Cichocka, Modification of surface of basalt fabric on protecting against high temperatures by the method of magnetron sputtering, Autex Res. J. 2019, Vol. 19, No. 1, p. 36-43.
  • 22. T. Liu, M. Chen, J. Dong, R. Sun, M. Yao, Numerical simulation and experiment verified for heat transfer processes of high-property inorganic fiber woven fabrics, Text. Res. J. 2022, Vol. 92, No. 13-14, p. 2368-2378.
  • 23. R. Hrynyk, I. Frydrych, E. Irzmańska, A. Stefko, Thermal properties of aluminized and non-aluminized basalt fabrics, Text. Res. J. 2013, Vol. 83, No. 17, p. 1860-1872.
  • 24. P. Miśkiewicz, I. Frydrych, M. Makówka, Examination of selected thermal properties of basalt composites, Fibers Text. East. Eur. 2020, Vol. 28, No. 2, p. 103-109.
  • 25. M. Szwarc, Some remarks on the CH2 [graphic omitted]CH2 molecule, Discuss. Faraday Soc. 1947, Vol. 2, p. 46-49.
  • 26. W.F. Gorham, Para-xylyleny polimers, United States Patent Office No. 3,342,754, Patented September 19, 1967.
  • 27. W.F. Gorham, A new, general synthetic method for the preparation of linear Poly-pxylylenes, Journal of Polymer Science Part A-1: Polymer Chemistry 1966, Vol. 4, No. 12, p. 3027-3039.
  • 28. S. Buchwalder, A. Borzì, J.J. Diaz Leon, F. Bourgeois, C. Nicolier, S. Nicolay, A. Neels, O. Zywitzki, A. Hogg, J. Burger, Thermal analysis of parylene thin films for barrier layer applications, Polymers 2022, Vol. 14, No. 17, p. 1-12.
  • 29. B. Humphrey, Using parylene for medical substrate coating, Medical Plastics and Biomaterials Magazine, January 1996.
  • 30. A. Nosal, A. Zydorczyk, A. Sobczyk-Guzenda, L. Głuchowski, H. Szymanowski, M. Gazicki-Lipman, Parylene coatings on biological specimens, Journal of Achievements in Materials and Manufacturing Engineering 2009, Vol. 37, No. 2, p. 442-447.
  • 31. M. Gazicki-Lipman, Vapor deposition polimerization of para-Xylylene derivatives – Mechanism and applications, Journal of Vacuum Society of Japan 2007, Vol. 50, No. 10, p. 601-608.
  • 32. G.P. Spellman, J.F. Carley, L.A. Lopez, Vacuum deposition of parylene films: Influence of process factors and baffling on film-thickness distribution, Journal of Plastic Film & Sheeting 1999, Vol. 15, No. 4, p. 308-328.
  • 33. T. Marszałek, M. Gazicki-Lipman, J. Ulański, Parylene C as versatile dielectric material for organic field-effect transistors, Beilstein Journal of Nanotechnology 2017, Vol. 8, p. 1532-1545.
  • 34. M. Cieślik, M. Gołda, A. Kotarba, Parylene coating for metal implant surface protection, Engineering of Biomaterials 2012, No. 116-117, p. 39-41.
  • 35. C. Hassle, R.P. von Metzen, P. Ruther, T. Stieglitz, Characterization of Parylene C as an encapsulation material for implanted neural prostheses, J. Biomed. Mater. Res. Part B 2010, Vol. 93, No. 1, p. 266-274.
  • 36. M. Cieślik, K. Engvall, J. Pan, A. Kotarba, Silane–parylene coating for improving corrosion resistance of stainless steel 316L implant material, Corros. Sci. 2011, Vol. 53, No. 1, p. 296-301.
  • 37. M. Kamińska, W. Okrój, W. Szymański, W. Jakubowski, P. Komorowski, A. Nosal, H. Szymanowski, M. Gazicki-Lipman, H. Jerczyńska, Z. Pawłowska, B. Walkowiak, Interaction of Parylene C with biological objects, Acta of Bioengineering and Biomechanics 2009, Vol. 11, No. 3, p. 19-25.
  • 38. B.J. Kim, E. Meng, Micromachining of Parylene C for bioMEMS, Polymers for Advanced Technologies 2016, Vol. 27, No. 5, p. 564-576.
  • 39. A.A. Guermoudi, P.Y. Cresson, A. Ouldabbes, G. Boussatour, T. Lasri, Thermal conductivity and interfacial effect of parylene C thin film using the 3-omega method, J Therm Anal Calorim 2021, Vol. 145, No. 1, p. 1-12.
  • 40. B.G. Halvorson, N. Kerr, Effect of light on the properties of silk fabrics coated with Parylene-C, Studies in Conservation 1994, Vol. 39, No. 1, p. 45-56.
  • 41. P. Miśkiewicz, M. Tokarska, I. Frydrych, A. Nosal, Composite based on basalt fabric intended for protection against burns, especially for the palm side of a protective glove and the method of manufacturing this composite, Patent Application PL, P.445458, July 4, 2023.
  • 42. ISO 12127-1:2015. Clothing for Protection Against Heat and Flame—Determination of Contact Heat Transmission Through Protective Clothing or Constituent Materials—Part 1: Contact Heat Produced by Heating Cylinder.
  • 43. ISO 11612:2015. Protective Clothing— Clothing to Protect Against Heat and Flame—Minimum Performance Requirements.
  • 44. ISO 6942:2022. Protective Clothing—Protection Against Heat and Fire—Method of Test: Evaluation of Materials and Materials Assemblies When Exposed to a Source of Radiant Heat.
  • 45. A.K. Puszkarz, J. Wojciechowski, I. Krucińska, Analysis of the thermal insulation of textiles using thermography and CFD simulation based on micro-CT models, Autex Res. J. 2020, Vol.20, No.3, p.345-351.
  • 46. A.K. Samanta (Ed.), Colorimetry, IntechOpen, London 2022.
  • 47. ISO 11664-4:2008(E)(CIE S 014-4/E:2007). Colorimetry—Part 4: CIE 1976 L*a*b* colour space.
  • 48. G. Sharma, W. Wu, E.N. Dalal, The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations, COLOR Research and Application 2005, Vol. 30, No. 1, p. 21-30.
  • 49. W.S. Mokrzycki, M. Tatol, Color difference Delta E - A survey, Machine Graphics and Vision 2011, Vol. 20, No. 4, p. 383-411.
  • 50. ISO/IEC Guide 98-3:2008. Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba01d808-58bd-4b9a-bd57-6301fb8f4579
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.