Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the wet steam flow in a steam turbine operating in a nuclear power plant. Using a pneumatic and an optical probe, the static pressure, steam velocity, steam wetness and the fine water droplets diameter spectra were measured before and beyond the last turbine low-pressure stage. The results of the experiment serve to understand better the wet steam flow and map its liquid phase in this area. The wet steam data is also used to modify the condensation model used in computational fluid dynamics simulations. The condensation model, i.e. the nucleation rate and the growth rate of the droplets, is adjusted so that results of the numerical simulations are in a good agreement with the experimental results. A 3D computational fluid dynamics simulations was performed for the low-pressure part of the turbine considering non-equilibrium steam condensation. In the post-processing of the of the numerical calculation result, the thermodynamic wetness loss was evaluated and analysed. Loss analysis was performed for the turbine outputs of 600, 800, and 1100 MW, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
63--85
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
- Doosan Škoda Power s.r.o., Tylova 1/57, 301 28, Pilsen, Czech Republic
autor
- Doosan Škoda Power s.r.o., Tylova 1/57, 301 28, Pilsen, Czech Republic
autor
- Czech Technical University in Prague, Technická 4, 160 00, Prague, Czech Republic
Bibliografia
- [1] Walters P.T., Skingley P.C.: An optical instrument for measuring the wetness fraction and droplet size of wet steam flow in LP turbines. In: Proc. Conf. on Steam Turbines for the 1980s, Vol. 12, London, 9–12 Oct. 1979, C141, 337–348.
- [2] Kleitz A., Laali, A.R., Courant J.J.: Fog droplet size measurement and calculation in wet steam turbines. In: Proc. Int. Conf. on Technology of Turbine Plant Operating in Wet Steam (J.M. Mitchell, Ed.), London, 11–13 October 1988, 201– 206.
- [3] Petr V., Kolovratník M.: Modelling of the droplet size distribution in LP steam turbine. In: Proc. 3rd Eur. Conf. on Turbomachinery – B, Fluid Dynamics and Thermodynamics, London, 2–5 March 1999, 771–782.
- [4] Starzmann J., Schatz M., Casey M.V., Mayer J.F., Sieverding F.: Modelling and validation of wet steam flow in a low pressure steam turbine. In: Proc. ASME Turbo Expo 2011, Vancouver, June 6–10, 2011, GT2011-45672, 2335–2346.
- [5] Hideaki S., Tabata S. Tochitani N., Sasao Y., Takata R., Osako M.: Investigation of moisture removal on last stage stationary blade in actual steam turbine. In: Proc. ASME Turbo Expo 2020, virtual, online, Sept. 21–25, 2020, GT2020-14831.
- [6] Grübel M., Starzmann J., Schatz M., Eberle T., Vogt D.M., Sieverding F.: Two-phase flow modeling and measurements in low-pressure turbines – Part I: numerical validation of wet steam models and turbine modeling. J. Eng. Gas Turbines Power 137(2015), 4, 042602 (11), GTP-14-1442.
- [7] Starzmann J., Hughes F. R., White, A., et al.: Results of the International Wet Steam Modelling Project. In: Proc. Wet Steam Conference. Prague, Sept. 12–14, 2016.
- [8] Fendler Y., Dorey J.M., Stanciu M., Lance M., Léonard O.: developments for modeling of droplets deposition and liquid film flow in a throughflow code for steam turbines. In: Proc. ASME Turbo Expo 2012, Copenhagen, June 11–15, 2012, GT2012-68968, 537–547.
- [9] Gyarmathy G.: Grundlagen einer Theorie der Nassdampfturbine. PhD thesis, ETH Zurich, Juris-Verlag, Zurich 1962.
- [10] Laali A.R.: A new approach for assessment of the wetness losses in steam turbines. In Proc. IMechE Conf. Turbomachinery – Latest Developments in a Changing Scene, London, March, 1991, 155–166.
- [11] Wróblewski W, Chmielniak T., Dykas S.: Models for water steam condensing flows. Arch. Thermodyn. 41 (2020), 4, 63–92.
- [12] Petr V., Kolovratník M.: Wet steam energy loss and related Baumann rule in low pressure steam turbines. P. I. Mech. Eng. A-J. Pow. 228(2014), 2, 206–215.
- [13] Holmberg H., Ruohonen P., Ahtila P.: Determination of the real loss of power for a condensing and a backpressure turbine by means of second law analysis. Entropy 11 (2009), 4, 702–712.
- [14] Gardzilewicz A.: Evaluating the efficiency of low pressure part of steam turbines based on probing measurements. Trans. Inst. Fluid-Flow Mach. 135(2017), 41–56.
- [15] Míšek T., Kubín Z.: Static and dynamic analysis of 1 220 mm steel last stage blade for steam turbine. Appl. Comput. Mech. 3(2009), 1, 133–140.
- [16] Luxa M. Safarík P., Synác J., Rudas B.: High-speed aerodynamic investigation of the midsection of a 48” rotor blade for the last stage of steam turbine. In: Proc: 10th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, ETC10, Lappeenranta, Apr. 15–19, 2013, ETC2013-116.
- [17] Finzel C., Schatz M., Casey M.V., Gloss D.: Experimental investigation of geometrical parameters on the pressure recovery of low pressure steam turbine exhaust hoods. In: Proc. ASME Turbo Expo 2011, Vancouver, June 6–10 2011, GT2011- 45302, 2255–2263.
- [18] Jones M., Crossland R.: performance improvements of nuclear power plants by the application of longer LP last stage blades and advanced design techniques. In: ASME Power Conf., Baltimore, June 28–31, 2014; POWER2014-32072, V001T04A002.
- [19] Hoznedl M., Kolovratník M., Bartoš O., Sedlák K., Kalista R., Mrózek L.: Experimental research on the flow at the last stage of a 1090 MW steam turbine. P. I. Mech. Eng. A-J. Pow 232(2018), 5, 515–524.
- [20] Štastný M.: Flow field in the last steam turbine stage. In: Proc. 7th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics , Euroturbo 7, Athens, March 5–9, 2007, 867–876.
- [21] Kolovratník M., Bartoš O.: CTU optical probes for liquid phase detection in the 1000 MW steam turbine. In: Proc. EFM14 – Experimental Fluid Mechanics 2014, EPJ Web Conf. 92(2015), 02035.
- [22] Brüggemann C., Schatz M., Vogt D.M., Popig F.: A numerical investigation of the impact of part-span connectors on the flow field in a linear cascade. In: Proc.ASME Turbo Expo 2017, Charlotte, June 26–30, 2017, GT2017-63359, V02AT40A005.
- [23] Radnic T., Hála J., Luxa M., Šimurda D., Fürst J., Hasnedl D., Kellner, J.: Aerodynamic effects of tie-boss in extremely long turbine blades. ASME J. Eng. Gas Turbines Power. 140(2018), 11: 112604, GTP-17-1218.
- [24] Häfele M. Traxinger C., Grübel M., Schatz M., Vog D.M., Drozdowski R.: Experimental and numerical investigation of the flow in a low-lressure industrial steam turbine with part-span connectors. In: Proc. ASME Turbo Expo 2015: Montreal. June 15–19, 2015, GT2015-42202, V008T26A005.
- [25] Young J.B.: Spontaneous condensation of Steam in Supersonic Nozzles. 1980STIN...8113306Y, Whittle laboratory, Cambridge University, 1980
- [26] Gerber A.G. Kermani M.J.: A pressure based Eulerian–Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow. Int. J. Heat Mass Tran. 47(2004), 10–11, 2217–2231.
- [27] Hill P.G.: Condensation of water vapour during supersonic expansion in nozzles. J. Fluid Mech. 25(1966), 3, 593–620.
- [28] Ansys CFX. https://www.ansys.com/products/fluids/ansys-cfx (accessed 5 March 2021).
- [29] The International Association for the Properties of Water and Steam. Revised Release on the IAPWS-97 Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. http://www.iapws.org/relguide/IF97-Rev.html (accessed 15 Sept. 2020).
- [30] Sova L., Jun G., Štastný M.: Modifications of steam condensation model implemented in commercial solver. AIP Conf. Proc. 1889(2017), 020039-1–020039-8.
- [31] Petr V., Kolovratník M.: Heterogeneous effects in the droplet nucleation process in LP steam turbines. In: Proc. 4th Eur. Conf. on Turbomachinery Flud Dynamics and Thermodynamics (G. Bois, R. Decuypere, F. Martelli, Eds.), Firenze, 2001, 783–792.
- [32] Baumann K.: Some recent developments in large steam turbine practice. J. Inst. Electr. Eng., 59(1921), 565–623.
- [33] Moore M.J.: Gas dynamics of wet steam and energy losses in wet-steam turbines. In: Two-Phase Steam Flow in Turbines and Separators (M.J. Moore, C.H. Sieverding, Eds.). Hemisphere, Washington 1976, 59–126.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9fc67a2-1a42-4fdc-9b68-3d1fe3605a6a