PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative Method for Water Deiron Ions Using Capillary Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among all known inorganic pollutants of wastewater and natural water that adversely affect water bodies, different living organisms and human beings, iron compounds are the most common. Before discharging the wastewater into water bodies, it is important to remove iron ions from wastewater. The application of capillary materials in water and wastewater treatment is a promising direction of ecology and technology. The capillary properties of materials allow the development of quite simple, autonomous, highly efficient and energy-saving systems for water purification. The aim of the present paper was the investigation of the influence of the basic conditions of the filtration process with the application of capillary materia on the efficiency of iron ions removal. The initial concentration of the model solution, pH and temperature of the filtration process, as well as the contact area of the liquid phase with oxygen of the air were studied. The proposed method is appropriate for the treatment of water in the concentration range from 5 to 10 mg/dm3 with an optimum pH in the range of 4–7. The experimental data showed high efficiency of capillary materials application, providing sufficient removal of iron ions from low concentrated solutions, compared to the traditional method of precipitation. The main advantage of the capillary materials is the simplicity of their application, quite high degree of purification and there no need to consume electricity or additional reagents, which allows creating autonomous water treatment facilities and plants.
Słowa kluczowe
Rocznik
Strony
174--182
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Metallurgical Technologies, State University of Economics and Technology, 5, Stepana Til`gi str., 50006, Kryvyi Rih, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
Bibliografia
  • 1. Al-Anber M., A. Al-Anber Z. 2008. Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination, 225, 1-3, 70-81. doi.org/10.1016/j.desal.2007.07.006
  • 2. Biela R., Kucera T. 2016. Efficacy of sorption materials for nickel, iron and manganese removal from water. Procedia Eng., 162, 56–63. DOI: 10.1016/j.proeng.2016.11.012
  • 3. Braslapskiy V.A. Capillary processes in textile materials. Moscow, Legprombytizdat, 1987. (in Russian)
  • 4. Buzylo V., Pavlychenko A., Savelieva T., Borysovska O. 2018. Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers, Paper presented at the E3S Web of Conferences, 60. DOI: 10.1051/e3sconf/20186000013.
  • 5. Carolin C.F., Kumar P.S., Saravanan A., Joshiba G. J., Naushad M. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799. DOI: 10.1016/j.jece.2017.05.029
  • 6. Choo K.H., Lee H., Choi S.J. 2005. Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. Journal of Membrane Science, 267, 18–26. DOI: 10.1016/j.memsci.2005.05.021
  • 7. Chowdhury S., Mazumder M. A. J., Al-Attas O., Husain T. 2016. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of The Total Environment, 569, 476–488. DOI: 10.1016/j.scitotenv.2016.06.166
  • 8. Custodio M., Peñaloza R. 2021. Evaluation of the Distribution of Heavy Metals and Arsenic in Inland Wetlands (Peru) Using Multivariate Statistical Methods. Ecol. Eng. Environ. Technol., 22(3), 104–111. DOI: 10.12912/27197050/135522
  • 9. Ellis D., Bouchard C., Lantagne G. 2000. Removal of iron and manganese from groundwater by oxidation and microfiltration. Desalination, 130, 3, 255–264. DOI: 10.1016/S0011-9164(00)00090-4
  • 10. Fu F., Wang Q. 2011. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92 (3), 407–418. DOI: 10.1016/j.jenvman.2010.11.011
  • 11. Gomelya M., Tverdokhlib M., Shabliy T., Radovenchyk V., Linyucheva O. 2021. Sorbent-Catalyst for Acceleration of the Iron Oxidation Process. Journal of Ecological Engineering, 22(3), 221–230. DOI: 10.12911/22998993/133030
  • 12. Gomelya M., Trus I., Shabliy T. 2014. Application of aluminium coagulants for the removal of sulphate from mine water. Chemistry and Chemical Technology, 8, 2, 197–203. DOI: 10.23939/chcht08.02.197
  • 13. Gomelya N., Ivanova V., Galimova V., et al. 2017. Evaluation of cationite efficiency during extraction of heavy metal ions from diluted solutions. Eastern-European Journal of Enterprise Technologies, 5/6, 89, 4–10. DOI: 10.15587/1729-4061.2017.109406
  • 14. Gomelya N., Tverdokhlib M. 2016. Research of efficiency of water purification-exchange resin from iron compounds using modified filter media. Eastern-European Journal of Enterprise Technologies, 2, 10, 47–52. DOI: 10.15587/1729-4061.2016.63608
  • 15. Gomelya N.D., Trus I.N., Nosacheva Y.V. 2014. Water purification of sulfates by liming when adding reagents containing aluminum. Journal of Water Chemistry and Technology, 36, 2, 70–74. DOI: 10.3103/S1063455X14020040
  • 16. Gorova A., Pavlychenko A., Borysovs’ka O., Krups’ka L. 2013. The development of methodology for assessment of environmental risk degree in mining regions. Annual Scientific-Technical Colletion – Mining of Mineral Deposit, 207–209. DOI: 10.1201/b16354-38
  • 17. Halysh V., Trus I., Nikolaichuk A., Skiba M., Radovenchyk I., Deykun I., Vorobyova V., Vasylenko I., Sirenko L. 2020. Spent Biosorbents as Additives in Cement Production. Journal of Ecological Engineering, 21, 2, 131–138. DOI: 10.12911/22998993/116328
  • 18. Han H., Sun W., Hu Y., Cao X., Tang H., Liu R., Yue T. 2016. Magnetite precipitation for iron removal from nickel-rich solutions in hydrometallurgy process. Hydrometallurgy, 165, 318–322. DOI: 10.1016/j.hydromet.2016.01.006
  • 19. Heuss-Aßbichler S., Melanie J., Klapper D. et al. 2016. Recovery of copper as zero-valent phase and/ or copper oxide nanoparticles from wastewater by ferritization. Journal of Environmental Management, 181, 1–7. DOI: 10.1016/j.jenvman.2016.05.053
  • 20. Hryniuk V.I., Arkhypova L.M. 2018. Regularity of effects of climatic changes on quality indicators of surface water of the Dniester basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 125–133. http://nbuv.gov.ua/UJRN/Nvngu_2018_3_19
  • 21. Koedrith P., Kim H., Weon J., SeoY. R. 2013. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. International Journal of Hygiene and Environmental Health, 216(5), 587–598. DOI: 10.1016/j.ijheh.2013.02.010
  • 22. Korchef A., Kerkeni I., Amor M.B., Galland S., Persin F. 2009. Iron removal from aqueous solution by oxidation, precipitation and ultrafiltration. Desalin. Water Treat, 9, 1–8. DOI: 10.5004/dwt.2009.745
  • 23. Korchemlyuk M., Arkhipova L., Kravchynskyi R.L., Mykhailyuk J.D. 2019. Anthropogenic influence from point and diffuse sources of pollution in the upper prut river basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 125–131. DOI: 10.29202/nvngu/2019-1/12
  • 24. Kyrii S., Dontsova T., Kosogina I., Astrelin I., Klymenko N., Nechyporuk D. 2020. Local wastewater treatment by effective coagulants based on wastes. Journal of Ecological Engineering, 21, 5, 34–41. DOI: 10.12911/22998993/122184
  • 25. Leszczyński J. 2019. Color Removal from Groundwater by Coagulation and Oxidation Processes. Journal of Ecological Engineering, 20(9), 138–144. DOI: 10.12911/22998993/112497
  • 26. Melnyk L., Bessarab O., Matko S., Malovanyy M. 2015. Adsorption of heavy metals ions from liquid media by palygorskite. Chemistry and Chemical Technology, 9, 4, 467–470. DOI: 10.23939/chcht09.04.467
  • 27. Monastyrov M., Prikhna T., Halbedel B., Kochetov G., Marquis F., Mamalis A., Prysiazhna O.2019. Eectroerosion dispersion, sorption and coagulaton for complex water purification; electroerosion waste recycling and manufacturing of metals, oxides and alloys nanopowders. Nanotechnology Perceptions, 15, 48–57. DOI: 10.4024/N24MO18A.ntp.15.01
  • 28. Munter R., Ojaste H., Sutt J. 2005.Complexed iron removal from ground water. Journal of Environmental Engineering, 131, 7, 1014–1020.DOI: 10.1061/(ASCE)0733-9372(2005)131:7(1014)
  • 29. Pacini V.A., Ingallinella A.M., Sanguinetti G. 2005. Removal of iron and manganese using biological roughing up flow filtration technology. Water Research, 39, 18, 4463–4475. DOI: 10.1016/j.watres.2005.08.027
  • 30. Peligro F.R., Pavlovic I., Rojas R., Barriga C. 2016. Removal of heavy metals from simulated wastewater by in situ formation of layered double hydroxides. Chemical Engineering Journal, 306, 1035–1040. DOI: 10.1016/j.cej.2016.08.054
  • 31. Pichura V., Potravka L., Skrypchuk P., Stratichuk N. 2020. Anthropogenic and Climatic Causality of Changes in the Hydrological Regime of the Dnieper River. Journal of Ecological Engineering, 21(4), 1–10. DOI: 10.12911/22998993/119521.
  • 32. Plotnikov N.I. Groundwater is our wealth. Moscow, Nedra, 1990. (in Russian)
  • 33. Radovenchik V.M., Korostyatinets V.D., Ivanenko E.I. 2001. Study of efficiency of iron ions extraction from aqueous solutions by ferrite method. Khimiya i Tekhnologiya Vody, 23(2), 172–176.
  • 34. Radovenchyk I., Trus I., Halysh V., Krysenko T.,Chuprinov E., Ivanchenko A. 2021. Evaluation of Optimal Conditions for the Application of Capillary Materials for the Purpose of Water Deironing. Ecol. Eng. Environ. Technol., 22(2), 1–7. DOI: 10.12912/27197050/133256
  • 35. Remeshevska I., Trokhymenko G., Gurets N., Stepova O., Trus I., Akhmedova V. 2021. Study of the Ways and Methods of Searching Water Leaks in Water Supply Networks of the Settlements of Ukraine. Ecol. Eng. Environ. Technol., 22(4), 14–21. DOI: 10.12912/27197050/137874
  • 36. Rusdiyanto E., Sitorus S.R., Noorachmat B.P., Sobandi R. 2021. Assessment of the Actual Status of the Cikapundung River Waters in the Densely-Inhabited Slum Area, Bandung City. Journal of Ecological Engineering, 22(11), 198–208. DOI: 10.12911/22998993/142916
  • 37. Sabadash V., Mylanyk O., Matsuska O., Gumnitsky J. 2017. Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry and Chemical Technology, 11, 4, 459–462.
  • 38. Shevchenko O., Kornienko S., Dihtyaruk O. 2013. Analysis of the reasons for the increase in the concentration of iron in the groundwater of the water intakes of Shepetivka. Visnyk, Kyiv, Kyiv National University named after Taras Shevchenko. (in Ukrainian)
  • 39. Sillberg C.V., Kullavanijaya P., Chavalparit O. 2021. Water Quality Classification by Integration of Attribute-Realization and Support Vector Machine for the Chao Phraya River. Journal of Ecological Engineering, 22(9), 70–86. DOI: 10.12911/22998993/141364
  • 40. State sanitary norms and rules “Hygienic requirements for drinking water intended for human consumption” (DSanPIN 2.2.4-171-10). (in Ukrainian)
  • 41. Trokhymenko G., Magas N., Gomelya N., Trus I., Koliehova A. 2020. Study of the Process of Electro Evolution of Copper Ions from Waste Regeneration Solutions. Journal of Ecological Engineering, 21, 2, 29–38. DOI: 10.12911/22998993/116351
  • 42. Trus I.M., Fleisher H.Y., Tokarchuk V.V., Gomelya M.D., Vorobyova V.I. 2017. Utilization of the residues obtained during the process of purification of mineral mine water as a component of binding materials. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 104–109.
  • 43. Trus I.M., Gomelya M.D. 2021. Desalination of mineralized waters using reagent methods. Journal of Chemistry and Technologies, 29(3), 417–424. DOI: 10.15421/jchemtech.v29i3.214939
  • 44. Trus I., Halysh V., Gomelya M., Radovenchyk V. 2021. Low-Waste Technology for Water Purification from Iron Ions. Ecol. Eng. Environ. Technol., 22(4), 116–123. DOI: 10.12912/27197050/137860
  • 45. Trus I.M., Gomelya M.D., Makarenko I.M., Khomenko A.S., Trokhymenko G.G. 2020. The Study of the particular aspects of water purification from heavy metal ions using the method of nanofiltration. Naukovyi Visnyk Natsionalnogo Hirnychogo Universytety, 4, 117–123. DOI: 10.33271/nvngu/2020-4/117
  • 46. Trus І., Gomelya N., Halysh V., Radovenchyk I., Stepova O., Levytska O. 2020. Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3/6, 105, 21–27. DOI: 10.15587/1729-4061.2020.206443
  • 47. Trus І., Gomelya N., Trokhymenko G., Magas N., Hlushko O. 2019. Determining the influence of the medium reaction and the technique of magnetite modification on the effectiveness of heavy metals sorption. Eastern-European Journal of Enterprise Technologies, 6/10(102), 49–54. doi.org/10.15587/1729-4061.2019.188295
  • 48. URL: http://www. aquaphor.ua/aqualen
  • 49. Vardhan K.H., Kumar P.S., Panda R.C. 2019. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives, Journal of Molecular Liquids, 290. DOI: 10.1016/j.molliq.2019.111197
  • 50. Walczak A. 2021. The Use of World Water Resources in the Irrigation of Field Cultivations. Journal of Ecological Engineering. 22(4), 186–206. DOI: 10.12911/22998993/134078
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9fad6e4-c393-4ab3-b031-6f5e6e85dc19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.