

A R C H I V E S
o f

F O U N D R Y E N G I N E E R I N G
DOI: 10.2478/afe-2013-0065

Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences

ISSN (2299-2944)
Volume 13

Issue 3/2013

84 – 87

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 1 3 , I s s u e 3 / 2 0 1 3 , 8 4 - 8 7 84

Production Scheduling for the Furnace -

Casting Line System

A. Stawowy *, J. Duda

AGH University of Science and Technology, Faculty of Management, Gramatyka 10, 30-067 Krakow, Poland
*Corresponding author. E-mail address: astawowy@zarz.agh.edu.pl

Received 28.05.2013; accepted in revised form 31.05.2013

Abstract

The problem considered in the paper is motivated by production planning in a foundry equipped with the furnace and casting line, which
provides a variety of castings in various grades of cast iron/steel for a large number of customers. The quantity of molten metal does not
exceed the capacity of the furnace, the load is a particular type of metal from which the products are made in the automatic casting lines.
The goal is to create the order of the melted metal loads to prevent delays in delivery of goods to customers. This problem is generally
considered as a lot-sizing and scheduling problem. The paper describes two computational intelligence algorithms for simultaneous
grouping and scheduling tasks and presents the results achieved by these algorithms for example test problems.

Keywords: Application of information technology to the foundry industry, Production planning, Scheduling

1. Introduction

Scheduling is an important management activity within a plant.

Finding a good feasible schedule by which costs and lead times can
be reduced, is often a very complex and difficult task. Complex and
comprehensive character of the modeled objects requires
development of flexible tools which would be useful for solving the
considered problem.

There are only a few studies reported on models
and algorithms for production planning and scheduling in
foundries. The current state-of-the art in planning and scheduling
research in foundry production systems can be found in [1].
Assuming that a production bottleneck is the furnace, a mixed-
integer programming (MIP) models are usually proposed to
determine the lot size of the items and the required alloys to be
produced during each period of the finite planning horizon that is
subdivided into smaller periods.

Four approaches are used as the solving tools:
1. discrete event simulation,
2. specialized heuristics, mostly computational intelligence (CI)

algorithms,

3. commercial solvers for problems of small size,
4. commercial solvers combined with heuristics reducing space

of feasible solutions.
The aim of this paper is to present the effective CI heuristics for

production planning and scheduling in the single furnace-single
casting line system. Section 2 provides a MIP model for foundry
scheduling problem. In Section 3, the details of proposed heuristics
are given. The computational experiments are described in Section
4, and the conclusions are drawn in Section 5.

2. Lot-sizing and scheduling model

The MIP model presented in this section is an extension
of Araujo et al. lot sizing and scheduling model for automated
foundry [2]. We use the following notation:
Indices
i=1,…,I - produced items; k=1,…,K - produced alloys
t=1,…,T - working days; n=1,…,N - sub-periods
Parameters
dit - demand for item i in day t; wi - weight of item i

Unauthenticated | 89.73.89.243
Download Date | 9/27/13 3:45 PM

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 1 3 , I s s u e 3 / 2 0 1 3 , 8 4 - 8 7 85

ai
k = 1, if item i is produced from alloy k, otherwise 0

stk - setup cost for alloy k; C - loading capacity of the furnace
hit

–, hit
+ - penalty for delaying (–) and storing (+) production

of item i in day t
Variables
Iit

–, Iit
+ - number of items i delayed (–) and stored (+) at the end

of day t
zn

k = 1, if there is a setup (resulting from a change) of alloy k
in sub-period n, otherwise 0
yn

k = 1, if alloy k is produced in n in sub-period, otherwise 0
xin - number of items i produced in sub-period n

Production planning problem is defined as follows:

Minimize)()(
1 1

_

1 1

_ ∑∑∑∑
= =

++

= =

++
K

k

N

n

k
nkititit

I

i

T

t
it zstIhIh (1)

subject to:

TtIidIIaxII ititit

N

n

K

k

k
iintiti ,...,1,,...,1,

1 1
1,1, ==≥+−+− −+

= =

−
−

+
− ∑∑ (2)

NnKkyCzstaxw k
n

k
nk

k
iin

I

i
i ,...,1,,...,1,

1
==≤+∑

=
(3)

NnKkyyz k
n

k
n

k
n ,...,1,,...,1,1 ==−≥ − (4)

Nny
K

k

k
n ,...,1,1

1
==∑

=
(5)

IiIIxIIxII iiitititititit ,...,1,0,,,,,0,, 0
_
0

__ ==ℑ∈≥ +++ (6)

The goal (1) is to find a plan that minimizes the sum of the
costs of delayed production, storage costs of finished goods
and the setup cost if the alloy is changed during furnace load.

Equation (2) balances inventories, delays and the volume
of production of each item in each period. Constraint (3) ensures
that the furnace capacity is not exceeded in single load. Constraint
(4) sets variable zn

k to 1, if there is a change in alloys in the
subsequent periods, while constraint (5) ensures that only one
alloy is produced in each sub-period.

3. Solution heuristics

Preliminary experiments performed by the authors indicated
that the lot sizing problem presented in the previous section
cannot be efficiently solved with simple heuristics that operate on
a single solution (like tabu search or simulated annealing), as the
number of variables is significant (few thousands for real size
problems). Therefore two population heuristics have been used:
genetic algorithm and differential evolution.

3.1. Genetic algorithm

In mathematical programming, and indirect, that has a non-

standard structure, that usually needs to be decoded before the
evaluation of objective function. Indirect representation, however,
may better reflect the specifics of the problem, e.g. some constraints
maybe included in its structure or it can allow for faster calculation of
the objective function.

That is why a special representation of solution is used in the
proposed genetic algorithm. This representation comprise three
kind of vectors (chromosomes): at least one vector x representing
the quantity of items that are produced in a given subperiod, the
same number of vectors o representing the orders’ numbers of the
produced items, and one vector a representing alloy type that is
produced in this subperiod. The number of vectors x and o in
a chromosome is arbitrary set and limits the quantity of different
items that can be produced in one subperiod. An exemplary
solution with 10 subperiods, 10 items, 2 alloy types and maximum
3 changes allowed, written in the proposed representation is
shown in Fig. 1. For example in the first subperiod 9 items for
order 3 are produced, 50 items for order 4 are produced, and 33
items for order 2 are produced. All items are produced from alloy
type 1.

i 1 2 3 4 5 6 7 8 9 10

x1i 9 97 6 20 32 49 30 89 10 34

x2 i 50 3 66 28 64 28 62 16 43 73

x3 i 33 35 61 81 15 41 13 36 4 27

o1 i 3 8 5 6 1 9 1 9 3 7

o2 i 4 6 3 8 2 10 3 8 1 10

o3 i 2 9 2 10 4 7 5 7 4 6

a i 1 2 1 2 1 2 1 2 1 2
Fig. 1. Solution representation used in proposed GA

Such representation allows for a significant reduction of the

search space, and simultaneously ensures that only one type
of alloy is produced during the single subperiod.

The representation has also this advantage that standard
crossovers, like one-point, can be directly applied without any
modification. All vectors are exchanged in the same positions, so
the alloy for orders that are planned in a given period still match
these orders. Contrary to the crossover, some mutation operators
may cause that alloy of a given order does not match alloy
planned in a given subperiod. The authors defined three different
mutation operators. First mutation operating on items simply adds
or subtracts 1.0 for a randomly chosen element of vector x. This
mutation does not disturb alloy of orders. Second mutation
operates on orders and with a given probability it can change the
order number in a randomly chosen element of vector o to another
order number, that is produced from the same alloy. Finally, third
mutation operates on alloy and can change alloy type
in a randomly chosen subperiod (i.e. element of vector a). The
orders in this subperiod have to be changed for the ones that
match new alloy type. Application of three different types
of mutations allow for very precise exploitation of the solution
space. Solutions to the recombination stage are taken on the basis
of standard binary tournament (from two randomly chosen
solutions, the one with better objective functions becomes the
winner). After a series of experiments the crossover rate was set
to 0.5, the first mutation rate to 0.2, and for remaining two
mutations 0.02. Population size was set to 50 solutions. The
pseudo-code of the algorithm is presented in Fig. 2.

Unauthenticated | 89.73.89.243
Download Date | 9/27/13 3:45 PM

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 1 3 , I s s u e 3 / 2 0 1 3 , 8 4 - 8 7 86

Fig. 2. Outline of genetic algorithm used in experiments

3.2. Differential evolution

Differential evolution (DE) was developed in order to solve

primarily continuous optimization problems, but due to the fact
that it does not operate on gradients it can be applied to virtually
any type of optimization problems. However, applications of DE
to the lot-sizing problem described in the world literature are very
rare. Lieckens and Vandaele proposed an efficient DE for solving
an Advanced Resource Planning (ARP) model [4]. The most
recently, Xu et al. proposed hybrid GA and DE algorithm for
solving combined scheduling and lot-sizing problem [5].

Similarly to genetic algorithms DE operates on the population
of solutions, but its mechanism relies mainly on the strategy of
choosing solutions for the mutation stage. Many strategies were
defined for DE, the authors decided to use the strategy denoted as
DE/rand-To-best/1/bin/ [6] which means that the mutated solution
is created on the basis of the best solution found so far and two
other randomly chosen solutions, and then binary crossover is
used (see Fig. 3).

Binary crossover simply replaces some of genes in original
solutions with the values from the mutant solution with the Cr
probability.

Fig. 3. Outline of differential evolution used in experiments

Contrary to the proposed genetic algorithm, differential

evolution uses direct representation of a production schedule
corresponding to the lot sizing model presented in Section 2. This
means that the solution is a matrix of items and subperiods. Ssuch
representation can easily lead to the situation that items planned
for production in a given subperiod should be made from different
alloy type, which means infeasible solution. In order to avoid such
situation, a repair algorithm has been proposed. From the items

that are planned in a given subperiod the one with the highest
value (i.e. weight) is fixed to the plan, and the remaining items are
removed from the plan if they are made from a different alloy
type than the chosen one. Following parameters values were
chosen in the experiments: crossover probability Cr = 0.9 and
scale parameter s = 0.8.

4. Computational experiments

4.1. Test problems

Computational experiments were conducted on the basis of
the test problems proposed in [2]. The characteristic of these
problems is covered in Table 1.

Table 1.
Test problems characteristics
Parameter Value
number of items (I) 50
number of days (T) 5
number of subperiods (N) 10
number of alloys (K) 10
demand (dit) [10, 60]
weight of item (wi) [1, 30]
setup for alloy (stk) [5, 10]
setup penalty of alloy (sk) low: 5*stk, high: 50*stk
tightness of furnace capacity (Cap) C/0.6, C/0.8, C/1.0, C/1.2

Ten instances of the problem were generated. The basis

furnace capacity C was generated using the following formula
corresponding to the total sum of the weights of ordered items:

50
11 1
∑∑∑
== =

+
=

K

k
ki

N

i

T

t
it stwd

C (7)

Each instance were computed for four variants of furnace
capacity tightness Cap – from very tight C/0.6 to the very loose
C/1.2. Also two variants of setup penalty for alloy type change
between two subperiods were analysed: with relatively low value
5*stk and with ten times higher penalty value 50*stk.

4.2. Results of the experiments

Each problem instance was first run in CPLEX from IBM
Optimization Studio 12.5 in order to determine lower bound for
this instance. CPLEX algorithm and two heuristic algorithms (GA
and DE) were run for 3 minutes for each problem instance and the
combination of capacity tightness Cap and setup penalty sk. This
means 80 different problems were computed. The calculations for
each heuristic were repeated 10 times. Table 2 contains average
values of a relative increase over the lower bound for a solution
achieved by CPLEX solver and the solutions generated by both
heuristics, and the standard deviation from the mean for the
experiments with low penalty of alloy setup sk = 5.

Initialize population P with random values
Evaluate population P and print the best solution
while terminal_condition not met
 for each solution p in P
 Select p1, p2 and p3 from P at random
 Generate mutant pm = s * (p_best - p1) + s * (p2 – p3)
 Perform binary crossover with p and pm with prob. Cr
 If f(p’)> f(p) then Replace original solution p in P
 end for
while end

Initialize population P with random values
Evaluate population P and print the best solution
while terminal_condition not met
 Select solutions for recombination with binary tournament
 Perform one-point crossover with probability 0.5
 Perform mutation1 with probability 0.2
 Perform mutation2 with probability 0.02
 Perform mutation3 with probability 0.02
 Evaluate population P and print the best solution
while end

Unauthenticated | 89.73.89.243
Download Date | 9/27/13 3:45 PM

A R C H I V E S o f F O U N D R Y E N G I N E E R I N G V o l u m e 1 3 , I s s u e 3 / 2 0 1 3 , 8 4 - 8 7 87

Genetic algorithm occurred to be the best solver for low
and normal value of the furnace capacity tightness. Differential
evolution was better than CPLEX only for the loosest value
of Cap, while for the tightest value of Cap both heuristics were
significantly worse than CPLEX.

Table 2.
Results of the experiments for low penalty of alloy setup
Capacity
tightness CPLEX GA DE

C/1.2 average
std.dev.

9.42
0.78

0.32
0.11

7.50
1.64

C/1.0 average
std.dev.

27.20
2.37

1.20
1.11

32.68
8.68

C/0.8 average
std.dev.

65.84
16.64

15.24
10.89

121.25
27.36

C/0.6 average
std.dev.

175.66
117.29

263.86
123.72

626.65
316.94

However even the results provided by CPLEX were almost 2

times distant from the theoretical lower bound.
Table 3 presents the results achieved for the test problems

with high penalty of alloy setup sk = 50. It means that the
algorithm should prefer the solutions with a limited number
of alloy type changes between two adjacent subperiods.

Table 3.
Results of the experiments for high penalty of alloy setup
Capacity
tightness CPLEX GA DE

C/1.2 average
std.dev.

7.45
1.14

0.70
0.42

11.01
2.36

C/1.0 average
std.dev.

22.34
2.87

1.02
0.37

31.93
6.78

C/0.8 average
std.dev.

60.76
5.01

37.58
13.91

134.19
43.99

C/0.6 average
std.dev.

49.57
11.14

96.91
9.46

247.98
39.95

Again, for a much higher value of the penalty of alloy setup,

genetic algorithm achieved the best results, except for the tightest
furnace capacity. This time DE was definitely the worst solver.

Presented experiments show that further improvements need
to be implemented for both heuristics in order to make them
competitive tools to the CPLEX solver, or even better as it was in
the most cases in the experiments with low penalty of alloy setup.

5. Conclusions

In this paper, the computational intelligence algorithms are
described for the lot-sizing and scheduling problem in single
furnace-single casting line environment. The genetic algorithm
proposed by us can achieve better results than CPLEX, and it can
potentially handle more complex problems which can be
expressed in any form (including if-then rules, external functions)
that allows to assess the quality of solutions.

Although the CI algorithms work well for the problem under
consideration, it should be noted that the lot-sizing problem does
not fully describe the characteristic of the production planning in
a foundry. LS model is primarily aimed at balancing resources
without sufficiently taking into account the time requirements
(clients' due dates). Therefore, the model requires an extension or
reconstruction to reflect all the constraints and dependencies
associated with production and marketing requirements.

References

[1] Stawowy, A. & Duda, J. (2012). Models and algorithms for

production planning and scheduling in foundries – current
state and development perspectives. Archives of Foundry
Engineering. 12(2), 69-74. DOI: 10.2478/v10266-012-
0039-4.

[2] de Araujo, S.A., Arenales, M.N. & Clark, A.R. (2008). Lot
sizing and furnace scheduling in small foundries. Computers
& Operations Research. 35(3), 916-932. DOI: 10.1016/
j.cor.2006.05.010.

[3] Goren, H., Tunali, S. & Jans, R. (2010). A review
of applications of genetic algorithms in lot sizing. Journal
of Intelligent Manufacturing. 21(4), 575-590. DOI:
10.1007/s10845-008-0205-2.

[4] Lieckens, K. & Vandaele ,N. (2011). Differential evolution
to solve the lot size problem. ERN: Production; Cost;
Capital & Total Factor Productivity, Value Theory. DOI:
10.2139/ssrn.1968316.

[5] Xu, X., Li, L., Fan, L., Zhang, J., Xuhua, Y. & Wang, W.
(2013). Hybrid Discrete Differential Evolution Algorithm for
Lot Splitting with Capacity Constraints in Flexible Job
Scheduling. Mathematical Problems in Engineering.
DOI:10.1155/2013/986218.

[6] Feoktistov, V. (2006). Differential Evolution. In Search
of Solutions. Berlin Heidelberg: Springer Verlag.

Unauthenticated | 89.73.89.243
Download Date | 9/27/13 3:45 PM

