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Abstract 
 
The problem considered in the paper is motivated by production planning in a foundry equipped with the furnace and casting line, which 
provides a variety of castings in various grades of cast iron/steel for a large number of customers. The quantity of molten metal does not 
exceed the capacity of the furnace, the load is a particular type of metal from which the products are made in the automatic casting lines. 
The goal is to create the order of the melted metal loads to prevent delays in delivery of goods to customers. This problem is generally 
considered as a lot-sizing and scheduling problem. The paper describes two computational intelligence algorithms for simultaneous 
grouping and scheduling tasks and presents the results achieved by these algorithms for example test problems.  
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1. Introduction 
 
Scheduling is an important management activity within a plant. 

Finding a good feasible schedule by which costs and lead times can 
be reduced, is often a very complex and difficult task. Complex and 
comprehensive character of the modeled objects requires 
development of flexible tools which would be useful for solving the 
considered problem. 

There are only a few studies reported on models  
and algorithms for production planning and scheduling in 
foundries. The current state-of-the art in planning and scheduling 
research in foundry production systems can be found in [1]. 
Assuming that a production bottleneck is the furnace, a mixed-
integer programming (MIP) models are usually proposed to 
determine the lot size of the items and the required alloys to be 
produced during each period of the finite planning horizon that is 
subdivided into smaller periods.  

Four approaches are used as the solving tools: 
1. discrete event simulation, 
2. specialized heuristics, mostly computational intelligence (CI) 

algorithms, 

3. commercial solvers for problems of small size, 
4. commercial solvers combined with heuristics reducing space 

of feasible solutions. 
The aim of this paper is to present the effective CI heuristics for 

production planning and scheduling in the single furnace-single 
casting line system. Section 2 provides a MIP model for foundry 
scheduling problem. In Section 3, the details of proposed heuristics 
are given. The computational experiments are described in Section 
4, and the conclusions are drawn in Section 5. 

 
 

2. Lot-sizing and scheduling model 
 

The MIP model presented in this section is an extension  
of Araujo et al. lot sizing and scheduling model for automated 
foundry [2]. We use the following notation: 
Indices 
i=1,…,I - produced items; k=1,…,K - produced alloys 
t=1,…,T - working days; n=1,…,N - sub-periods 
Parameters 
dit - demand for item i in day t; wi - weight of item i 
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ai
k = 1, if item i is produced from alloy k, otherwise 0 

stk - setup cost for alloy k; C - loading capacity of the furnace 
hit

–, hit
+ - penalty for delaying (–) and storing (+) production  

of item i in day t 
Variables 
Iit

–, Iit
+ - number of items i delayed (–) and stored (+) at the end  

of day t 
zn

k = 1, if there is a setup (resulting from a change) of alloy k  
in sub-period n, otherwise 0 
yn

k = 1, if alloy k is produced in n in sub-period, otherwise 0 
xin - number of items i produced in sub-period n 

Production planning problem is defined as follows: 
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The goal (1) is to find a plan that minimizes the sum of the 
costs of delayed production, storage costs of finished goods  
and the setup cost if the alloy is changed during furnace load. 

Equation (2) balances inventories, delays and the volume  
of production of each item in each period. Constraint (3) ensures 
that the furnace capacity is not exceeded in single load. Constraint 
(4) sets variable zn

k to 1, if there is a change in alloys in the 
subsequent periods, while constraint (5) ensures that only one 
alloy is produced in each sub-period. 

 
 

3. Solution heuristics 
 

Preliminary experiments performed by the authors indicated 
that the lot sizing problem presented in the previous section 
cannot be efficiently solved with simple heuristics that operate on 
a single solution (like tabu search or simulated annealing), as the 
number of variables is significant (few thousands for real size 
problems). Therefore two population heuristics have been used: 
genetic algorithm and differential evolution. 
 
 
3.1. Genetic algorithm 

 
In mathematical programming, and indirect, that has a non-

standard structure, that usually needs to be decoded before the 
evaluation of objective function. Indirect representation, however, 
may better reflect the specifics of the problem, e.g. some constraints 
maybe included in its structure or it can allow for faster calculation of 
the objective function.  

That is why a special representation of solution is used in the 
proposed genetic algorithm. This representation comprise three 
kind of vectors (chromosomes): at least one vector x representing 
the quantity of items that are produced in a given subperiod, the 
same number of vectors o representing the orders’ numbers of the 
produced items, and one vector a representing alloy type that is 
produced in this subperiod. The number of vectors x and o in  
a chromosome is arbitrary set and limits the quantity of different 
items that can be produced in one subperiod. An exemplary 
solution with 10 subperiods, 10 items, 2 alloy types and maximum 
3 changes allowed, written in the proposed representation is 
shown in Fig. 1. For example in the first subperiod 9 items for 
order 3 are produced, 50 items for order 4 are produced, and 33 
items for order 2 are produced. All items are produced from alloy 
type 1.  

i 1 2 3 4 5 6 7 8 9 10 

x1i 9 97 6 20 32 49 30 89 10 34 

x2 i 50 3 66 28 64 28 62 16 43 73 

x3 i 33 35 61 81 15 41 13 36 4 27 

o1 i 3 8 5 6 1 9 1 9 3 7 

o2 i 4 6 3 8 2 10 3 8 1 10 

o3 i 2 9 2 10 4 7 5 7 4 6 

a i 1 2 1 2 1 2 1 2 1 2 
Fig. 1. Solution representation used in proposed GA 

 
Such representation allows for a significant reduction of the 

search space, and simultaneously ensures that only one type  
of alloy is produced during the single subperiod. 

The representation has also this advantage that standard 
crossovers, like one-point, can be directly applied without any 
modification. All vectors are exchanged in the same positions, so 
the alloy for orders that are planned in a given period still match 
these orders. Contrary to the crossover, some mutation operators 
may cause that alloy of a given order does not match alloy 
planned in a given subperiod. The authors defined three different 
mutation operators. First mutation operating on items simply adds 
or subtracts 1.0 for a randomly chosen  element of vector x. This 
mutation does not disturb alloy of orders. Second mutation 
operates on orders and with a given probability it can change the 
order number in a randomly chosen element of vector o to another 
order number, that is produced from the same alloy. Finally, third 
mutation operates on alloy and can change alloy type  
in a randomly chosen subperiod (i.e. element of vector a). The 
orders in this subperiod have to be changed for the ones that 
match new alloy type. Application of three different types  
of mutations allow for very precise exploitation of the solution 
space. Solutions to the recombination stage are taken on the basis 
of standard binary tournament (from two randomly chosen 
solutions, the one with better objective functions becomes the 
winner). After a series of experiments the crossover rate was set 
to 0.5, the first mutation rate to 0.2, and for remaining two 
mutations 0.02. Population size was set to 50 solutions. The 
pseudo-code of the algorithm is presented in Fig. 2. 
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Fig. 2. Outline of genetic algorithm used in experiments 

 
 

3.2. Differential evolution 
 
Differential evolution (DE) was developed in order to solve 

primarily continuous optimization problems, but due to the fact 
that it does not operate on gradients it can be applied to virtually 
any type of optimization problems. However,  applications of DE 
to the lot-sizing problem described in the world literature are very 
rare. Lieckens and Vandaele proposed an efficient DE for solving 
an Advanced Resource Planning (ARP) model [4]. The most 
recently, Xu et al. proposed hybrid GA and DE algorithm for 
solving combined scheduling and lot-sizing problem [5]. 

Similarly to genetic algorithms DE operates on the population 
of solutions, but its mechanism relies mainly on the strategy of 
choosing solutions for the mutation stage. Many strategies were 
defined for DE, the authors decided to use the strategy denoted as 
DE/rand-To-best/1/bin/ [6] which means that the mutated solution 
is created on the basis of the best solution found so far and two 
other randomly chosen solutions, and then binary crossover is 
used (see Fig. 3). 

Binary crossover simply replaces some of genes in original 
solutions with the values from the mutant solution with the Cr 
probability. 
 

 
Fig. 3. Outline of differential evolution used in experiments 
 
Contrary to the proposed genetic algorithm, differential 

evolution uses direct representation of a production schedule 
corresponding to the lot sizing model presented in Section 2. This 
means that the solution is a matrix of items and subperiods. Ssuch 
representation can easily lead to the situation that items planned 
for production in a given subperiod should be made from different 
alloy type, which means infeasible solution. In order to avoid such 
situation, a repair algorithm has been proposed. From the items 

that are planned in a given subperiod the one with the highest 
value (i.e. weight) is fixed to the plan, and the remaining items are 
removed from the plan if they are made from a different alloy 
type than the chosen one. Following parameters values were 
chosen in the experiments: crossover probability Cr = 0.9 and 
scale parameter s = 0.8. 
 
 

4. Computational experiments 
 
 
4.1. Test problems 
 

Computational experiments were conducted on the basis of 
the test problems proposed in [2]. The characteristic of these 
problems is covered in Table 1. 
 
Table 1. 
Test problems characteristics 
Parameter Value 
number of items (I) 50 
number of days (T) 5 
number of subperiods (N) 10 
number of alloys (K) 10 
demand (dit) [10, 60] 
weight of item (wi) [1, 30] 
setup for alloy (stk) [5, 10] 
setup penalty of alloy (sk) low: 5*stk, high: 50*stk 
tightness of furnace capacity (Cap) C/0.6, C/0.8, C/1.0, C/1.2 

 
Ten instances of the problem were generated. The basis 

furnace capacity C was generated using the following formula 
corresponding to the total sum of the weights of ordered items:  
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Each instance were computed for four variants of furnace 
capacity tightness Cap – from very tight C/0.6 to the very loose 
C/1.2. Also two variants of setup penalty for alloy type change 
between two subperiods were analysed: with relatively low value 
5*stk and with ten times higher penalty value 50*stk.  
 
 
4.2. Results of the experiments 
 

Each problem instance was first run in CPLEX from IBM 
Optimization Studio 12.5 in order to determine lower bound for 
this instance. CPLEX algorithm and two heuristic algorithms (GA 
and DE) were run for 3 minutes for each problem instance and the 
combination of capacity tightness Cap and setup penalty sk. This 
means 80 different problems were computed. The calculations for 
each heuristic were repeated 10 times. Table 2 contains average 
values of a relative increase over the lower bound for a solution 
achieved by CPLEX solver and the solutions generated by both 
heuristics, and the standard deviation from the mean for the 
experiments with low penalty of alloy setup sk = 5. 

Initialize population P with random values 
Evaluate population P and print the best solution 
while terminal_condition not met 
   for each solution p in P 
       Select p1, p2 and p3 from P at random 
       Generate mutant pm = s * (p_best - p1) + s * (p2 – p3) 
       Perform binary crossover with p and pm with prob. Cr 
       If f(p’)> f(p) then Replace original solution p in P 
   end for 
while end 

Initialize population P with random values 
Evaluate population P and print the best solution 
while terminal_condition not met 
   Select solutions for recombination with binary tournament 
   Perform one-point crossover with probability 0.5 
   Perform mutation1 with probability 0.2 
   Perform mutation2 with probability 0.02 
   Perform mutation3 with probability 0.02 
   Evaluate population P and print the best solution 
while end 
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Genetic algorithm occurred to be the best solver for low  
and normal value of the furnace capacity tightness. Differential 
evolution was better than CPLEX only for the loosest value  
of Cap, while for the tightest value of Cap both heuristics were 
significantly worse than CPLEX. 

 
Table 2. 
Results of the experiments for low penalty of alloy setup 
Capacity 
tightness  CPLEX GA DE 

C/1.2 average 
std.dev. 

9.42 
0.78 

0.32 
0.11 

7.50 
1.64 

C/1.0 average 
std.dev. 

27.20 
2.37 

1.20 
1.11 

32.68 
8.68 

C/0.8 average 
std.dev. 

65.84 
16.64 

15.24 
10.89 

121.25 
27.36 

C/0.6 average 
std.dev. 

175.66 
117.29 

263.86 
123.72 

626.65 
316.94 

 
However even the results provided by CPLEX were almost 2 

times distant from the theoretical lower bound. 
Table 3 presents the results achieved for the test problems 

with high penalty of alloy setup sk = 50. It means that the 
algorithm should prefer the solutions with a limited number  
of alloy type changes between two adjacent subperiods. 
 
Table 3. 
Results of the experiments for high penalty of alloy setup 
Capacity 
tightness  CPLEX GA DE 

C/1.2 average 
std.dev. 

7.45 
1.14 

0.70 
0.42 

11.01 
2.36 

C/1.0 average 
std.dev. 

22.34 
2.87 

1.02 
0.37 

31.93 
6.78 

C/0.8 average 
std.dev. 

60.76 
5.01 

37.58 
13.91 

134.19 
43.99 

C/0.6 average 
std.dev. 

49.57 
11.14 

96.91 
9.46 

247.98 
39.95 

 
Again, for a much higher value of the penalty of alloy setup, 

genetic algorithm achieved the best results, except for the tightest 
furnace capacity. This time DE was definitely the worst solver. 

Presented experiments show that further improvements need 
to be implemented for both heuristics in order to make them 
competitive tools to the CPLEX solver, or even better as it was in 
the most cases in the experiments with low penalty of alloy setup. 
 

5. Conclusions 
 

In this paper, the computational intelligence algorithms are 
described for the lot-sizing and scheduling problem in single 
furnace-single casting line environment. The genetic algorithm 
proposed by us can achieve better results than CPLEX, and it can 
potentially handle more complex problems which can be 
expressed in any form (including if-then rules, external functions) 
that allows to assess the quality of solutions.  

Although the CI algorithms work well for the problem under 
consideration, it should be noted that the lot-sizing problem does 
not fully describe the characteristic of the production planning in 
a foundry. LS model is primarily aimed at balancing resources 
without sufficiently taking into account the time requirements 
(clients' due dates). Therefore, the model requires an extension or 
reconstruction to reflect all the constraints and dependencies 
associated with production and marketing requirements. 
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