PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Climate indices and drought characteristics in the river catchments of Western Ghats of India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study addresses the long-term trend in rainfall, minimum and maximum temperature, and the climate indices for the river catchments located in the diverse climate of the Western Ghats of India. The dry sub-humid Chaliyar catchment and humid Kajvi catchment have shown a dramatic change in the decadal rainfall, with the decade 1950-1960 being the point of change. The monsoon rainfall has decreased in the Chaliyar and Netravati catchments and increased insignificantly in the Kajvi catchment. With the increase in mean temperature, the number of rainy days is decreasing, and intense rainfall is increasing in the pre-monsoon. The increase in minimum temperature is more severe in all three catchments, irrespective of the region’s climate. The decline in rainy days is more figurative in the humid and per-humid catchments and has seen a 16-20% decrease in Rx 1 day, Rx 3 day, and Rx 5 day in the past six decades with an insignificant increase in the dry subhumid catchment. The frightful increase in warm days/nights with a decrease in cool days/nights has been alarming for the extremity of temperature in future years. The significant changes in the forest area in Chaliyar and Kajvi catchment and the increase in a built-up area in Netravati may have a decisive role in the nonseasonal variability in rainfall and temperature along with increasing greenhouse gases. In the case of meteorological drought studied using the Standardized Precipitation Index (SPI), moderate droughts have occurred over the Chaliyar and Kajvi, and extreme droughts over the Netravati catchments with no reduction in the frequency or severity of short-duration extreme rainfall events. The geographical location of the catchment has a greater impact on the characteristics of the rainfall and meteorological drought, and these changes in the hydrological regimes of the catchment have a significant bearing on the water availability in the catchments in the future years.
Czasopismo
Rocznik
Strony
371--384
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
  • Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India
  • Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India
autor
  • Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru 575025, India
Bibliografia
  • 1. Arnell NW, Lowe JA, Challinor AJ, Osborn TJ (2019) Global and regional impacts of climate change at different levels of global temperature increase. Climat Chang 155(3):377-391
  • 2. Basha G, Kishore P, Ratnam MV, Jayaraman A, Agha Kouchak A, Ouarda TB, Velicogna I (2017) Historical and projected surface temperature over India during the 20th and 21st century. Sci Rep 7(1):1-10
  • 3. Basistha A, Arya D, Goel N (2009) Analysis of historical changes in rainfall in the Indian Himalayas. Int J Climatol J Royal Meteorol Soc 29(4):555-572
  • 4. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In: Climate variability and change in high elevation regions: Past, present & future, Springer, pp 5-31
  • 5. Chandu N, Eldho T, Mondal A (2022) Hydrological impacts of climate and land-use change in Western Ghats India. Region Environ Change 22(1):1-15
  • 6. Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the colorado river basin. Climat Change 62(1-3):337-363
  • 7. Church M (2015) Channel stability: morphodynamics and the morphology of rivers. Riv Phys. Springer, Fluvial and Environmental Processes, pp 281-321
  • 8. Dash SK, Jenamani RK, Kalsi S, Panda SK (2007) Some evidence of climate change in twentieth-century India. Climat Change 85(3):299-321
  • 9. Dhorde AG, Korade MS, Dhorde AA (2017) Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India. Theor App Climatol 130(1):191-204
  • 10. Dubey SK, Sharma D (2018) Spatio-temporal trends and projections of climate indices in the Banas River Basin India. Environ Process 5(4):743-768
  • 11. Dubey SK, Ranjan RK, Misra AK, Wanjari N, Vishwakarma S (2022) Variability of precipitation extremes and drought intensity over the Sikkim State, India, during 1950-2018. Theor Appl Climatol 1-14
  • 12. Feddema JJ (2005) A revised thornthwaite-type global climate classification. Phys Geograph 26(6):442-466
  • 13. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan M, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442-1445
  • 14. Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol J Royal Meteorol Soc 28(11):1453-1469
  • 15. Halder S, Parekh A, Chowdary JS, Gnanaseelan C (2022) Dynamical and moist thermodynamical processes associated with Western Ghats rainfall decadal variability. npj Climate Atmos Sci 5(1):1-11
  • 16. Hamed KH, Rao AR (1998) A modified mann-kendall trend test for autocorrelated data. J Hydrol 204(1-4):182-196
  • 17. Handmer J, Honda Y, Kundzewicz ZW, Arnell N, Benito G, Hatfield J, Mohamed IF, Peduzzi P, Wu S, Sherstyukov B, et al. (2012) Changes in impacts of climate extremes: human systems and ecosystems. In: Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change, Cambridge University Press, pp 231-290
  • 18. Hengl T, Heuvelink GB, Tadić MP, Pebesma EJ (2012) Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor Appl Climatol 107(1-2):265-277
  • 19. Jose DM, Dwarakish G (2022) Frequency-intensity-distribution bias correction and trend analysis of high-resolution cmip6 precipitation data over a tropical river basin. Theor Appl Climatol 149(1-2):683-94
  • 20. Joshi MK, Pandey A (2011) Trend and spectral analysis of rainfall over India during 1901-2000. J Geophys Res Atmos. https://doi.org/ 10.1029/2010JD014966
  • 21. Joshi U, Rajeevan M (2006) Trends in precipitation extremes over India. Citeseer
  • 22. Klein Tank AM, Peterson T, Quadir D, Dorji S, Zou X, Tang H, San-thosh K, Joshi U, Jaswal A, Kolli R, et al. (2006) Changes in daily temperature and precipitation extremes in Central and south Asia. J Geophys Res Atmos 111(D16)
  • 23. Krishnakumar K, Rao GP, Gopakumar C (2009) Rainfall trends in twentieth century over Kerala India. Atmos Environ 43(11):1940-1944
  • 24. Krishnamurthy CKB, Lall U, Kwon HH (2009) Changing frequency and intensity of rainfall extremes over india from 1951 to 2003. J Climate 22(18):4737-4746
  • 25. Kumar SP, Roshin RP, Narvekar J, Kumar PD, Vivekanandan E (2009) Response of the Arabian sea to global warming and associated regional climate shift. Marine Environ Res 68(5):217-222
  • 26. Kumar V, Jain SK, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J J des Sci Hydrol 55(4):484-496
  • 27. Beniston M (2005) The risks associated with climatic change in mountain regions. In: Global change and mountain regions, Springer, pp 511-519
  • 28. Masroor M, Rehman S, Avtar R, Sahana M, Ahmed R, Sajjad H (2020) Exploring climate variability and its impact on drought occurrence: evidence from Godavari Middle sub-basin India. Weather Climate Extrem 30(100):277
  • 29. McKee TB, Doesken NJ, Kleist J et al (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology, California, vol 17, pp 179-183
  • 30. Mishra SK, Sahany S, Salunke P, Kang IS, Jain S (2018) Fidelity of CMIP5 multi-model mean in assessing Indian monsoon simulations. npj Climat Atmos Sci 1(1):1-8
  • 31. Mudbhatkal A, Amai M (2018) Regional climate trends and topographic influence over the western ghat catchments of India. Int J Climatol 38(5):2265-2279
  • 32. Mukherjee S, Aadhar S, Stone D, Mishra V (2018) Increase in extreme precipitation events under anthropogenic warming in India. Weather Climate Extrem 20:45-53
  • 33. Mundetia N, Sharma D et al (2015) Analysis of rainfall and drought in Rajasthan State India. Global Nest J 17(1):12-21
  • 34. Murage P, Hajat S, Kovats RS (2017) Effect of night-time temperatures on cause and age-specific mortality in London. Environ Epidemiol (Philadelphia, PA) 1(2):e005
  • 35. Nanditha J, van der Wiel K, Bhatia U, Stone D, Selton F, Mishra V (2020) A seven-fold rise in the probability of exceeding the observed hottest summer in India in a 2°C warmer world. Environ Res Lett 15(4):044028
  • 36. Pai D, Rajeevan M, Sreejith O, Mukhopadhyay B, Satbha N (2014) Development of a new high spatial resolution (0.25X 0.25) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65(1):1-18
  • 37. Palchaudhuri M, Biswas S (2013) Analysis of meteorological drought using standardized precipitation index: a case study of Puruliya District, West Bengal, India. Int J Environ Earth Sci Eng 7(3):6-13
  • 38. Pattanaik D, Rajeevan M (2010) Variability of extreme rainfall events over India during southwest monsoon season. Meteorol Appl J Forecast Practical Appl Train Tech Modell 17(1):88-104
  • 39. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101(27):9971-9975
  • 40. Pradhan RK, Sharma D, Panda S, Dubey SK, Sharma A (2019) Changes of precipitation regime and its indices over Rajasthan state of India: impact of climate change scenarios experiments. Climate Dyn 52(5):3405-3420
  • 41. Prakash S, Mitra AK, Momin IM, Pai D, Rajagopal E, Basu S (2015) Comparison of tmpa-3b42 versions 6 and 7 precipitation products with gauge-based data over india for the southwest monsoon period. J Hydrometeorol 16(1):346-362
  • 42. Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over india using 104 years of gridded daily rainfall data. Geophysical Res Lett 35(18)
  • 43. Ramachandra T, Vinay S, Bharath H (2016) Environmental flow assessment in a lotic ecosystem of Central Western Ghats, India. Hydrol Curr Res 7:1-14
  • 44. Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8(1):1-11
  • 45. Roy PS, Roy A, Joshi PK, Kale MP, Srivastava VK, Srivastava SK, Dwevidi RS, Joshi C, Behera MD, Meiyappan P et al (2015) Development of decadal (1985-1995-2005) land use and land cover database for India. Remote Sens 7(3):2401-2430
  • 46. Safeeq M, Fares A (2012) Hydrologic response of a hawaiian watershed to future climate change scenarios. Hydrol Process 26(18):2745-2764
  • 47. Sandeep S, Ajayamohan R (2015) Poleward shift in Indian summer monsoon low level jetstream under global warming. Climate Dyn 45(1):337-351
  • 48. Sharma A, Sharma D, Panda S, Dubey SK, Pradhan RK (2018) Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Global Planet Chang 161:82-96
  • 49. Shetty S, Umesh P, Shetty A (2022) Dependability of rainfall to topography and micro-climate: an observation using geographically weighted regression. Theor Appl Climatol 147(1):217-237
  • 50. Singh D, Tsiang M, Rajaratnam B, Diffenbaugh NS (2014) Observed changes in extreme wet and dry spells during the south Asian summer monsoon season. Nat Climate Chang 4(6):456-461
  • 51. Singh R, Mal S (2014) Trends and variability of monsoon and other rainfall seasons in Western Himalaya India. Atmos Sci Lett 15(3):218-226
  • 52. Singh R, Singh A, Kumar A (2014b) Climate change variability in coastal Karnataka, India. In: Climate change and biodiversity, Springer, pp 15-26
  • 53. Srivastava A, Rajeevan M, Kshirsagar S (2009) Development of a high resolution daily gridded temperature data set (1969-2005) for the Indian region. Atmos Sci Lett 10(4):249-254
  • 54. Stanford JA, Ward J (1993) An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J North Am Benthol Soc 12(1):48-60
  • 55. Twardy J (2011) Influence of man and climate changes on relief and geological structure transformation in central Poland since the Neolithic. Geographia Polonica 84(Special Issue Part 1):163-178
  • 56. Valverde MC, Marengo JA (2014) Extreme rainfall indices in the hydrographic basins of Brazil. Open J Mod Hydrol. https://doi. org/10.4236/ojmh.2014.41002
  • 57. Varghese SJ, Surendran S, Rajendran K, Kitoh A (2020) Future projections of Indian summer monsoon under multiple RCPs using a high-resolution global climate model multiforcing ensemble simulations. Climate Dyn 54(3):1315-1328
  • 58. Varikoden H, Revadekar J, Kuttippurath J, Babu C (2019) Contrasting trends in southwest monsoon rainfall over the Western Ghats region of India. Climate Dyn 52(7):4557-4566
  • 59. Vijay A, Sivan SD, Mudbhatkal A, Mahesha A (2021) Long-term climate variability and drought characteristics in tropical region of India. J Hydrol Eng 26(4):05021003
  • 60. Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdis Rev Climate Chang 2(6):851-870
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9f89fe7-92b3-4908-8845-e95cf8c5cb4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.