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Abstract In this article, we have considered the non-instantaneous fractional integro�
di�erential evolution system with Hilfer fractional di�erential operator in the Banach
space and discussed its existence results for the mild solution for the equation with
local and non-local conditions. These results are obtained by applying the method
of a C0 operator generated by the linear part of the equation combined with the
concept of nonlinear functional analysis and the �xed point theorems. We have dis-
cussed the examples to highlight the applicability of the results.
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1. Introduction Fractional calculus and di�erential equations became
an important branch of applied mathematics. This is because of many prob-
lems from the �elds of physical sciences, chemical sciences, biological sciences,
�nance, and image processing which are modeled using fractional di�erential
operators and give better approximations than those modeled using integer
order di�erential operators[13, 12, 1]. Researchers generalized the fractional
order di�erential operator in a way that coincides with the integer order dif-
ferential operator and this leads to the existence of many di�erential operators
like Riemann-Liouville, Caputo, Grownwell-Letnikov, and Conformable frac-
tional di�erential operators. The qualitative properties and applications of
fractional dynamical systems are found in [3, 16, 4]. Sometimes the system
with non-local initial conditions gives better approximations than classical
conditions. The qualitative properties and applications of the non-local sys-
tems are found in [5]. Hilfer came up with a new fractional di�erential oper-
ator which is a homotopy between Riemann-Liouville and Caputo fractional
di�erential operators. The qualitative properties and applications of dynami-
cal systems with Hilfer di�erential operator including classical and non-local
conditions are found in [7] and monograph Hilfer (2000).
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Systems having an abrupt change in the state at a �xed time moment or
in a small time interval are modeled into instantaneous impulsive evolution or
not-instantaneous impulsive evolution equation respectively. The qualitative
properties and applications of the integer order evolution systems with instan-
taneous impulses are found in [14] and the same for the fractional systems
are found in [9, 8]. In some of the evolutionary processes, not-instantaneous
impulses give better approximations instead of instantaneous impulses. The
qualitative properties and applications of systems with non-instantaneous im-
pulsive systems are found in [15, 11, 10].

This work considered non-instantaneous impulsive integro-di�erential frac-
tional order (0 < λ ≤ 1 and 0 ≤ µ ≤ 1) evolution system of Hilfer type

Dλ,µ
0+ u(ζ) = −Au(ζ)

+ f

(
ζ, u(ζ),

∫ ζ

0
a(ζ, τ, u(τ))dτ

)
, ζ ∈

[
∪ [si, ti+1)

]
∪ [sp, T0]

u(ζ) = gk(ζ, u(ζ)), ζ ∈ [t1, s1) ∪ [t2, s2) ∪ · · · ∪ [tp, sp),

and discussed the existence of solutions with local condition I(1−λ)(1−µ)
0+ u(0) =

u0 and non-local I(1−λ)(1−µ)
0+ [u(0) − h(u)] = u0 initial conditions over the

�nite interval [0, T0] in a Banach space U. Dλ,µ di�erential operators of Hilfer
type, A : U → U is a linear part of the integrodi�erential evolution equation,
Ku =

∫ ζ
0 a(ζ, τ, u(τ))dτ is nonlinear Volterra integral operator on U, f :

[0, T0] × U × U → U is nonlinear function and gk : [0, T0] × U are set of
non-linear functions applied in the interval [tk, sk) for all i = 1, 2, · · · , p.

The outline of the manuscript is as follows: Section-2 discusses the prelim-
inaries to establish the results, section-3 established existence result for the
non-instantaneous fractional order Hilfer integro-di�erential evolution system
with classical conditions followed by a nonlocal condition in section-4. Finally,
the conclusion is discussed in section-5.

2. Preliminaries This section is devoted to the de�nitions of integral
Iλζ0 and Hilfer fractional di�erential operator Dλ,µ

ζ0+
, Wright-type function Mλ

and properties, concept operator semi-group T (ζ), the operators like Kλ(ζ),
Sλ,µ(ζ).

Definition 2.1 (Jaiswal and Bahuguna (2020)) For λ > 0, the fractional
integral of order λ of a function h(ζ) is de�ned by

Iλζ0h(ζ) =
1

Γ(λ)

∫ ζ

ζ0

(ζ − τ)λ−1h(τ)dτ,

provided the integral on the right exists.
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Definition 2.2 (Jaiswal and Bahuguna (2020)) The Hilfer fractional deriva-
tive of order λ, 0 < λ < 1 and type µ, 0 ≤ µ ≤ 1 is de�ned by

Dλ,µ
ζ0+

h(ζ) = Iµ(1−λ)ζ0+

d

dζ
I(1−λ)(1−µ)
ζ0+

h(ζ),

provided the right value exists.

Definition 2.3 (Jaiswal and Bahuguna (2020)) For all θ ∈ C and λ > 0,
the Wright-type function Mλ is de�ned as:

Mλ(θ) =
∑
n∈N

(−θ)n−1

Γ(1− λn)(n− 1)!
(1)

provided the sum on the right exists.

Wright-type function satis�es the following properties:

(1) Mλ(θ) > 0 for all λ > 0.

(2) For −1 < η <∞ the integral,
∫∞
0 θηMλ(θ)dθ =

Γ(1+η)
Γ(1+λη) .

(3) For r > 0 the integral,
∫∞
0

λ
θλ+1 e

−rθMλ(θ
−λ)dθ = e−r

λ
for all λ > 0.

Let, T (ζ) be the family of semi-group generated by the linear operator −A
and de�ne two linear operators Sλ(ζ) and Qλ(ζ) as:

Sλ(ζ) =

∫ ∞

0
Mλ(θ)T (ζλθ)dθ (2)

Qλ(ζ) =

∫ ∞

0
λθMλ(θ)T (ζλθ)dθ (3)

Following properties are satis�ed by Sλ(ζ) and Qλ(ζ).

Lemma 2.4 (Jaiswal and Bahuguna (2020)) If T (ζ) be the family of C0-

semigroup generated by the linear operator −A for all ζ ∈ [0, T0] then the

families of operators Sλ(ζ) and Qλ(ζ) de�ned by (2) and (3) are:
(1) continuous and bounded for all ζ ∈ [0, T0].
(2) strongly continuous over the interval ζ ∈ (0, T0].

The operators Sλ(ζ) and Qλ(ζ) generate new linear operators Sλ,µ(ζ) and
Kλ(ζ).

Sλ,µ(ζ) = Iµ(1−λ)0 Kλ(ζ) (4)

Kλ(ζ) = ζλ−1Qλζ (5)

These operators Sλ,µ(ζ) and Kλ(ζ) satis�es following properties:
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Lemma 2.5 (Jaiswal and Bahuguna (2020)) If T (ζ) be the family of C0-

semigroup generated by the linear operator −A for all ζ ∈ [0, T0] then the

families of operators Sλ,µ(ζ) and Kλ(ζ) de�ned by (4) and (5) are:
(1) continuous and bounded for all ζ ∈ [0, T0].
(2) strongly continuous over the interval ζ ∈ (0, T0].

(3) ||Kλ(ζ)u|| ≤ ζλ−1M
Γ(λ) ||u||

(4) ||Sλ,µ(ζ)u|| ≤ M(µ(1−λ))ζλ+µ−λµ−1

Γ(λ+µ−λµ−1) ||u||.
Where, M is the bound of T ζ over the interval [0, T0].

Theorem 2.6 (Banach Fixed Point Theorem v. Borah and Bora (2019)) Let

E be closed subset of a Banach Space (U, || · ||) and let T : E → E contraction

then, T has unique �xed point in E.

Theorem 2.7 (Krasnoselskii's Fixed Point Theorem v. Borah and Bora (2019))

Let E be closed convex nonempty subset of a Banach Space (U, || · ||) and P
and Q are two operators on E satisfying:

(1) Pu+Qv ∈ E, whenever u, v ∈ E,

(2) P is contraction,

(3) Q is completely continuous

then, the equation Pu+Qu = u has a solution.

3. Equation with Classical Conditions This section establishes the
existence results for fractional order (0 < λ ≤ 1 and 0 ≤ µ ≤ 1) non-
instantaneous impulsive Hilfer integro-di�erential evolution systems with clas-
sical conditions.

Dλ,µ
0+ u(ζ) = −Au(ζ) + f

(
ζ, u(ζ),

∫ ζ

0
a(ζ, τ, u(τ))dτ

)
,

ζ ∈
[
∪ [si, ti+1)

]
∪ [sp, T0]

u(ζ) = gk(ζ, u(ζ)), ζ ∈ [t1, s1) ∪ [t2, s2) ∪ · · · [tp, sp)

I(1−λ)(1−µ)
0+ u(0) = u0

(6)
over the interval [0, T0] in the Banach space U.

Definition 3.1 The function u(ζ) is called mild solution of the impulsive
fractional equation (6) over the interval [0, T0] if u(t) satis�es the integral
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equation

u(ζ) =



Sλ,µ(ζ)u0 +
∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dτ, ζ ∈ [0, t1)

gk(ζ, u(ζ)), ζ ∈ [tk, sk)

Sλ,µ(ζ − sk)gk(sk, u(sk)) +

∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dζ,

ζ ∈ [sk, tk+1)

(7)
for all k.

Following theorem establishes the existence result for the Hilfer fractional
integro-di�erential evolution system with classical condition (6).

Theorem 3.2 If,

(A1) The evolution operator −A generates C0 semigroup S(t) for all t ∈
[0, T0].

(A2) The function f : [0, T0] × U × U → U is continuous with respect to ζ
and there exist a positive constants f∗1 and f∗2 such that ||f(ζ, u1, v1)−
f(ζ, u2, v2)|| ≤ f∗1 ||u1−u2||+f∗2 ||v1−v2|| for u1, v1, u2, v2 ∈ Br0 = {u ∈
U; ||u|| ≤ r0} for some r0.

(A3) The operator K : [0, T0] × U → U is continuous and there exist a con-

stant k∗ such that ||Ku−Kv|| ≤ k∗||u− v|| for u, v ∈ Br0.

(A4) The functions gk : [tk, sk]× U are continuous and there exist a positive

constants 0 < g∗k < 1 such that ||gk(ζ, u(ζ))− gk(ζ, v(ζ))|| ≤ g∗k||u− v||.

are satis�ed, then the fractional integro-di�erential system (6) with
not-instantaneous impulses has a unique mild solution.

Proof: De�ne the operator F on Banach space U by

Fu(t) =


F1u(ζ), ζ ∈ [0, t1)

F2ku(ζ), ζ ∈ [tk, sk)

F3ku(ζ), ζ ∈ [sk, tk+1)

where, the operators F1, F2k and F3k are de�ned as

F1u(ζ) = Sλ,µ(ζ)u0 +
∫ ζ

0
Kλ(ζ − τ)f(ζ, u(τ),Ku(τ))dτ, ζ ∈ [0, t1)

F2ku(ζ) = gk(ζ, u(ζ)), ζ ∈ [tk, sk)

F3ku(ζ) = Sλ,µ(ζ − sk)gk(sk, u(sk)) +

∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))ds,

ζ ∈ [sk, tk+1)
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for all k = 1, 2, · · · p.
In view of this de�nition of the operator F , the equation (7) has a unique

solution if and only if the operator equation u(ζ) = Fu(ζ) has a unique
solution. This is possible if and only if each of u(ζ) = F1u(ζ), u(ζ) = F2ku(ζ)
and u(ζ) = F3ku(ζ) has unique solution over the interval [0, t1), [tk, sk) and
[sk, tk+1) for all k = 1, 2, · · · , p respectively.
For all ζ ∈ [0, t1) and u, v ∈ Br0 ,

||F (n)
1 u(ζ)−F (n)

1 v(ζ)|| ≤
∫ ζ

0

∫ τ1

0
· · ·

∫ τn−1

0
||Kλ(ζ − τ1)||||Kλ(τ1 − τ2)|| · · ·

||Kλ(τn−1 − s)||(f∗1 + k∗f∗2 )
n||u− v||

dsdτn−1 · · · dτ1

Assuming (A1), (A2) and (A3) and using lemma 2.5 and simplifying we get,

||F (n)
1 u(t)−F (n)

1 v(t)|| ≤
t1∫
0

t1∫
0

· · ·
t1∫
0

t
n(λ−1)
1 Mn(f∗1 + k∗f∗2 )

n

(Γ(λ))n

× ||u− v||dsdτn−1 · · · dτ1

≤ t
n(λ−1)
1 Mn(f∗1 + k∗f∗2 )

n

(Γ(λ))n(n− 1)!

∫ t1

0
(t1 − τ)n−1|u− v||dτ

≤ tnα1 Mn(f∗1 + f∗2k
∗)n

n!(Γ(α))n
||u− v||

≤ c∗||u− v||.

Taking limit n tending to ∞ over interval [0, t1), ||F (n)
1 u − F (n)

1 v| ≤ c∗||u −
v|| → 0 for �xed t1. Therefore, there exist at least one m such that F (m)

1 is
contraction on Br0 . Thus, by general Banach contraction theorem the opera-
tor equation u(ζ) = F1u(ζ) has unique solution over the interval [0, t1).
For all k = 1, 2, · · · , p, ζ ∈ [tk, sk) and u, v ∈ U and assuming (A4)

||F2ku(ζ)−F2kv(ζ)|| = ||gk(ζ, u(ζ))− gk(ζ, v(ζ))|| ≤ g∗k||u− v||.

Therefore, F2k is contraction, and by Banach �xed point theorem the operator
equation u(ζ) = F2ku(ζ) has a unique solution for the interval [tk, sk) for
all k = 1, 2, · · · , p. This means for all k = 1, 2, · · · , p, u(ζ) = gk(ζ, u(ζ))
has unique solution for all t ∈ [tk, sk). Using Lipschitz continuity of gk, the
solution u is unique at sk also.
For all k = 1, 2, · · · , p, t ∈ [sk, tk+1) and u, v ∈ Br0 ,

||F (n)
3k u(ζ)−F (n)

3k v(ζ)|| ≤
∫ t

sk

∫ τ1

sk

· · ·
∫ τn−1

sk

||Kλ(ζ − τ1)||||Kλ(τ1 − τ2)|| · · ·

||Kλ(τn−1 − s)||(f∗1 + k∗f∗2 )
ndsdτn−1 · · · dτ1
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Assuming (A1), (A2) and (A3) and using lemma 2.5 and simplifying we get,

||F (n)
3k u(ζ)−F (n)

3k v(ζ)|| ≤
tk+1∫
sk

tk+1∫
sk

· · ·
tk+1∫
sk

(tk+1 − sk)
n(λ−1)Mn(f∗1 + k∗f∗2 )

n

(Γ(λ))n

||u− v||dsdτn−1 · · · dτ1

||F (n)
3k u(ζ)−F (n)

3k v(ζ)|| ≤
(tk+1 − sk)

n(λ−1)Mn(f∗1 + f∗2k
∗)n

(n− 1)!(Γ(λ))n∫ tk+1

sk

(tk+1 − s)n−1ds||u− v||

≤ (tk+1 − sk)
nλMn(f∗1 + f∗2k

∗)n

n!(Γ(λ))n
||u− v||

≤ c∗||u− v||.

Over interval [sk, tk+1) and taking n→ ∞, ||F (n)
3k u−F (n)

3k v| ≤ c∗||u− v|| → 0
for �xed sub-interval [sk, tk+1) for all k = 1, 2, · · · , p. Thus, there exist at

least one m such that F (m)
3k is contraction on Br0 . Thus by general Banach

contraction theorem the operator equation u(t) = F3ku(t) has unique solution
over the interval [sk, tk+1) for all k = 1, 2, · · · , p.
Hence, the operator equation u(ζ) = Fu(ζ) has a unique solution over the
interval [0, T0] which is nothing but the mild solution of the equation (6). qed

Example 3.3 Consider the integro-di�erential Hilfer system of order (0 <
λ ≤ 1 and 0 ≤ µ ≤ 1):

Dλ,µ
ζ u(ζ, ψ) = uψ,ψ(ζ, ψ) + u(ζ, ψ)uψ(ζ, ψ) +

∫ ζ

0
e−u(τ,ψ)dτ,

ζ ∈ [0, 1/3) ∪ [2/3, 1]

u(ζ, ψ) =
u(ζ, ψ)

2(1 + u2(ζ, ψ))
, ζ ∈ [1/3, 2/3)

(8)

over the interval [0, 1] with initial condition u(0, ψ) = u0(ψ) and boundary
condition u(ζ, 0) = u(ζ, 1) = 0.
The equation (8) can be reformulated as fractional order abstract equation
in U = L2([0, 1],R) as:

Dλ,µz(ζ) = Az(ζ) + f(ζ, z(ζ),Kz(ζ)), ζ ∈ [0, 1/3) ∪ [2/3, 1]

z(ζ) = g(ζ, z(ζ)) ζ ∈ [1/3, 2/3)
(9)

over the interval [0, 1] by de�ning z(ζ) = u(ζ, ·), operator Au = u′′ (second
order derivative with respect to ψ). The functions f and g over respected

domains are as f(ζ, z(ζ),Kz(ζ)) = (z2(tζ))′/2+
∫ ζ
0 e

−z(τ)dτ and g(ζ, z(ζ)) =
z(ζ)

2(1+z2(ζ))
respectively.
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(1) The linear operator A over the domain D(A) =
{
u ∈ U;u′′ exist and

continuous with u(0) = u(1) = 0
}
is self-adjoint, compact, and re-

solvent. Therefore A is the in�nitesimal generator of C0 semi- group
T (ζ) over the interval [0, 1] given by

T (ζ)u =
∞∑
n=1

exp(−n2π2ζ)⟨u, ϕn⟩ϕn, (10)

where ϕn(ψ) =
√
2sin(nπψ) for all n = 1, 2, · · · is the orthogonal basis

for the space U.
(2) The function K : [0, 1]× [0, 1]×U → U is continuous with respect to ζ

and di�erentiable with respect to z for all z and hence K is Lipschitz
continuous with respect to z. This means there exist positive constant
k∗ such that ||K(ζ, z1)−K(ζ, z2)|| ≤ k∗||z1 − z2||.

(3) The function f : [0, 1]×U×U → U is continuous with respect to ζ and
is di�erential with respect to argument z and Kz. Therefore there exist
positive constants f∗1 and f∗2 such that ||f(ζ, z1,Kz1)−f(ζ, z2,Kz2)|| ≤
f∗1 ||z1 − z2||+ f∗2 ||Kz1 −Kz2||, z1, z2 ∈ Br0 for some r0.

(4) The impulse g is continuous with respect to ζ and Lipchitz continuous
with respect to z with Lipschitz constant g∗ = 1/2 < 1.

Thus, by theorem-3.2 the equation (9) has unique solution over [0, 1]. Hence,
the equation (8) has a unique solution over the interval [0, 1].

4. Equation with Nonlocal Conditions This section establishes the
existence results for fractional order (0 < λ ≤ 1 and 0 ≤ µ ≤ 1) non-
instantaneous impulsive Hilfer integro-di�erential evolution systems with non-
local initial conditions.

Dλ,µ
0+ u(ζ) = −Au(ζ) + f

(
ζ, u(ζ),

∫ ζ

0
a(ζ, τ, u(τ))dτ

)
,

ζ ∈
[
∪ [si, ti+1)

]
∪ [sp, T0]

u(ζ) = gk(ζ, u(ζ)), ζ ∈ [t1, s1) ∪ [t2, s2) ∪ · · · [tp, sp)
u(0) = u0 + h(u)

(11)

in the Banach space U.

Definition 4.1 The function u(t) is called mild solution of the impulsive
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fractional equation (11) over the interval if u(t) satis�es the integral equation

u(ζ) =



Sλ,µ(ζ)[u0 + h(u)] +

∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dτ, ζ ∈ [0, t1)

gk(ζ, u(ζ)), ζ ∈ [tk, sk)

Sλ,µ(ζ − sk)gk(sk, u(sk)) +

∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dζ,

ζ ∈ [sk, tk+1)

(12)

The following theorem establishes the existence of the solution for the
non-local non-instantaneous fractional integro-di�erential evolution system
(11) of Hilfer type over the interval [0, T0].

Theorem 4.2 If,

(B1) The evolution operator −A generates C0 semigroup S(t) for all t ∈
[0, T0].

(B2) The function f(ζ, ·, ·) is continuous and f(·, u, v) is measurable on [0, T ]×
U× U. Also, there exist γ ∈ (0, λ) with mf ∈ L

1
γ ([0, T0],R) such that

|f(ζ, u, v)| ≤ mf (ζ) for all u, v ∈ U.
(B3) The operator K : [0, T0]×U → U is continuous and there exist a constant

k∗ such that

||Ku−Kv|| ≤ k∗||u− v||.
(B4) The operator h : U → U is Lipschitz continuous with respect to u with

Lipschitz constant 0 < h∗ ≤ 1.

(B5) The functions gk : [tk, sk]× U are continuous and there exist a positive

constants 0 < g∗k < 1 such that

||gk(t, u(t))− gk(t, v(t))|| ≤ g∗k||u− v||.

are satis�ed then the non-local non-instantaneous fractional order integro-

di�erential evolution system (12) has a mild solution provided M∗
0h

∗ < 1 and

M∗
0 g

∗ < 1.

Proof: Using the lemma-2.5 and (B4),

|Sλ,µ(ζ)(u0 + h(u))| ≤ M(µ(1− λ))ζλ+µ−λµ−1

Γ(λ+ µ− λµ− 1)
(|u0|+ h∗||u||+ |h(0)|). (13)

for all u ∈ Bk = {u ∈ U : ||u|| ≤ k} for any positive constant k and ζ ∈
[0, T0]. Using (B2), (t − s)λ−1 ∈ L

1
1−γ [0, ζ) for all ζ ∈ [0, T0] and γ ∈ (0, λ).

Taking M1 = ||mf ||
L

1
γ
and using Holder's inequality and assuming (B2), for
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ζ ∈ [0, T0]∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))|ds ≤ M

Γ(λ)

(∫ ζ

0
(ζ − τ)

λ−1
1−γ ds

)1−γ
M1

≤ MM1(γ − 1)

Γ(λ)(λ− γ)
ζλ−γ . (14)

For ζ ∈ [0, t1) and for positive r consider F1 and F2 on Br as,

F1u(ζ) =Sλ,µ(ζ)(u0 + h(u))

F2u(ζ) =

∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dτ

The function u(ζ) is a mild solution of the semi-linear fractional integro-
di�erential equation if and only if the operator equation u = F1u + F2u has
a solution for u ∈ Br for some r. Therefore the existence of a mild solution
of (6) over the interval [0, t1) is equivalent to determining a positive constant
r0, such that F1 + F2 has a �xed point on Br0 .
Step:1 ||F1u+ F2v|| ≤ r0 for some positive r0.
Let u, v ∈ Br0 where,

r0 =M∗
0

|u0|+ |h(z)|
1−M∗

0h
∗ +

M∗
1

(1−M∗
0h

∗)
t
(λ−γ)
1 ,

M∗
0 =

M(µ(1− λ))tλ+µ−λµ−1
1

Γ(λ+ µ− λµ− 1)
,

and

M∗
1 =

MM1(γ − 1)

Γ(λ)(λ− µ)

and considering

|F1u(ζ) + F2v(ζ)|

≤
∣∣∣∣Sλ,µ(ζ)(u0 + h(u))

∣∣∣∣+ ∣∣∣∣ ∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
≤ M(µ(1− λ))ζλ+µ−λµ−1

Γ(λ+ µ− λµ− 1)
(|u0|+ h∗||u||+ |h(0)|)

+
MM1(γ − 1)

Γ(λ)(λ− γ)
ζλ−γ

(using inequalities (13) and (14))

≤ r0 (since, M∗
0h

∗ < 1).
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Therefore, ||F1u+ F2v|| ≤ r0 for every pair u, v ∈ Br0 .
Step: 2 To show F1 is contraction on Br0 , consider u, v ∈ Br0 and ζ ∈ [0, t1),

|F1u(t)− F1v(t)| ≤
∣∣∣∣Sλ,µ(ζ)(u0 + h(u))− Sλ,µ(ζ)(u0 + h(v))

∣∣∣∣
≤ M(µ(1− λ))ζλ+µ−λµ−1

Γ(λ+ µ− λµ− 1)
h∗||u− v|| ≤M∗

0h
∗||u− v||

and M∗
0h

∗ < 1 which implies F1 is contraction.
Step: 3 To show F2 is completely continuous operator on Br0 , consider the
sequence {un} in Br0 converging to u ∈ Br0 then,

|F2un(ζ)− F2u(ζ)|

≤
∫ ζ

0
|Kλ(ζ − τ)||f(τ, un(τ),Kun(τ))dτ − f(τ, u(τ),Ku(τ))dτ |

≤ C∗
∫ ζ

0
||f(τ, un(τ),Kun(τ))− f(τ, u(τ),Ku(τ))||dτ,

where, c∗ = M(µ(1−λ))ζλ+µ−λµ−1

Γ(λ+µ−λµ−1) and using continuity of f with respect to the

second and third argument ||F2un−F2u|| → 0 as n→ ∞. So, F2 is continuous.
Now to show {F2u, u ∈ Br0} is relatively compact it is su�cient to show

(1) The family of functions {F2u, u ∈ Br0} is uniformly bounded and
equicontinuous.

(2) For any t ∈ [0, t1), {F2u(t), u ∈ Br0} is relatively compact in U.

Clearly, for any u ∈ Br0 , ||F2u|| ≤ r0, this means that the family {F2u, u ∈
Br0} is uniformly bounded in U.
For any u ∈ Br0 and 0 ≤ ζ1 < ζ2 < t1,

|F2u(ζ2)− F2(ζ1)|

=

∣∣∣∣ ∫ ζ2

0
Kλ(ζ2 − τ)f(τ, u(τ),Ku(τ))dτ −

∫ ζ1

0
Kλ(ζ1 − τ)

f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
=

∣∣∣∣ ∫ ζ2

ζ1

Kλ(ζ2 − τ)f(τ, u(τ),Ku(τ))dτ +

∫ ζ1

0
Kλ(ζ2 − τ)

f(τ, u(τ),Ku(τ))dτ −
∫ ζ1

0
Kλ(ζ1 − τ)f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
≤

∣∣∣∣ ∫ ζ2

ζ1

Kλ(ζ2 − τ)f(τ, u(τ),Ku(τ))dτ

∣∣∣∣+ ∣∣∣∣ ∫ ζ1

0

[
Kλ(ζ2 − τ)−

Kλ(ζ1 − τ)
]
f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
≤ I1 + I2,
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where,

I1 =

∣∣∣∣ ∫ ζ2

ζ1

Kλ(ζ2 − τ)f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
≤ MM1(γ − 1)

Γ(λ)(λ− γ)
(ζ2 − ζ1)

λ−γ

(Applying inequality (14) over interval [ζ1, ζ2]),

this implies the integral I1 → 0 as ζ1 → ζ2. Similarly,

I2 =

∣∣∣∣ ∫ ζ1

0

[
Kλ(ζ2 − τ)−Kλ(ζ1 − τ)

]
f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
=

∣∣∣∣ ∫ ζ1

0

[
(ζ2 − τ)λ−1Qλ(ζ2 − τ)− (ζ1 − τ)λ−1Qλ(ζ1 − τ)

]
f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
≤

∣∣∣∣ ∫ ζ1

0
(ζ2 − τ)λ−1

[
Qλ(ζ2 − τ)−Qλ(ζ1 − τ)

]
f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
+

∣∣∣∣ ∫ ζ1

0

[
(ζ2 − τ)λ−1 − (ζ1 − τ)λ−1

]
Qλ(ζ1 − τ)f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
Assuming the (B1),(B2), (B3) and Holder inequality the integral

∣∣∣∣ ∫ ζ1

0
(ζ2 − τ)λ−1

[
Qλ(ζ2 − τ)−Qλ(ζ1 − τ)

]
f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
and the integral

∣∣∣∣ ∫ ζ1

0

[
(ζ2 − τ)λ−1 − (ζ1 − τ)λ−1

]
Qλ(ζ1 − τ)f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
also vanishes as ζ1 → ζ2. The vanishing of both the integral lead to the van-
ishing of I2. Thus, |F2u(τ2)−F2(τ1)| tends to zero as ζ1 → ζ2 for independent
choice of u ∈ Br0 . Hence, the family {F2u, u ∈ Br0} is equicontinuous.

De�ne the family X(ζ) = {F2u(ζ), u ∈ Br0} for all ζ ∈ [0, t1). Clearly,
X(0) is relatively compact. Let, ζ0 ∈ [0, t1) be �xed and for each ϵ ∈ [0, t1),
de�ne an operator Fϵ on Br0 by formula

Fϵu(t) =

∫ ζ−ϵ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dτ.



G.J. Trivedi, V. Shah, J. Sharma, R. Sanghvi 45

To show that the family X(ζ) for all ζ ∈ [0, t1) is relatively compact consider,

|F2u(ζ)− Fϵu(ζ)|

=
∣∣ ∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dτ

−
∫ ζ−ϵ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dτ

∣∣∣∣
≤

∫ ζ

ϵ
|Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dτ |

≤ MM1(γ − 1)

Γ(λ)(λ− γ)
(ζ − ϵ)λ−γ (Applying inequality (14)).

Thus, X(ζ) is relatively compact and hence, by Ascoli-Arzela theorem the
operator F2 is completely continuous on Br0 . Using Krasnoselskii's �xed point
theorem F1 + F2 has a �xed point on Br0 which is a mild solution of the
equation (11) over the interval [0, t1).

On the interval [tk, sk) for all k = 1, 2, · · · , p and �xed positive r0 de�ne
the operators F1 and F2 on Br0 as,

F1u(ζ) =gk(ζ, u(ζ))

F2u(ζ) =0

assuming (B5) using Krasnoselskii's �xed point theorem, u(ζ) is the mild so-
lution of the non-instantaneous Hilfer integro-di�erential fractional evolution
system over the interval [tk, sk).

On the interval [sk, tk+1) for all k = 1, 2, · · · , p and for positive r we de�ne
F1 and F2 on Br as,

F1u(ζ) =Sλ,µ(ζ − sk)gk(sk, u(sk))

F2u(ζ) =

∫ ζ

0
Kλ(ζ − τ)f(τ, u(τ),Ku(τ))dζ

then, the function u(ζ) is the mild solution of Hilfer fractional integro-di�erential
evolution system over the interval [sk, tk+1) if and only if the operator equa-
tion u = F1u + F2u has a solution for u ∈ Br for some r. This is equivalent
to the a mild solution of (11) over the interval [sk, tk+1).
Select,

r0 =M∗
0

|u0|+ |g(·, z)|
1−M∗

0 g
∗ +

M∗
1

(1−M∗
0 g

∗)
(tk+1 − sk)

(λ−γ)
1 ,

M∗
0 =

M(µ(1− λ))(tk+1 − sk)
λ+µ−λµ−1
1

Γ(λ+ µ− λµ− 1)
,

, and

M∗
1 =

MM1(γ − 1)

Γ(λ)(λ− µ)
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and applying similar arguments as applied for interval [0, t1) and using Kras-
noselskii's �xed point theorem F1 + F2 has a �xed point on Br0 which is
nothing but the mild solution of the Hilfer fractional integro-di�erential evo-
lution system (11) over the interval [sk, tk+1). This completes the proof of the
theorem. qed

Example 4.3 Consider, the Hilfer fractional partial integro-di�erential evo-
lution system with nonlocal conditions:

D
1/2,1
ζ u(ζ, ψ) = uψ,ψ(ζ, ψ) + u(ζ, ψ)uψ(ζ, ψ)

+
1

50

∫ ζ

0
e−u(τ,ψ)dτ, ζ ∈ [0, 1/3) ∪ [2/3, 1]

u(ζ, ψ) =
u(ζ, ψ)

10(1 + u2(ζ, ψ))
, ζ ∈ [1/3, 2/3).

(15)

over the interval [0, 1] with initial condition u(0, ψ) = u0(ψ)+
∑2

i=1
1
3i
u(1/i, ψ)

and boundary condition u(ζ, 0) = u(ζ, 1) = 0.
The equation (15) can be reformulated as fractional order abstract equation
in U = L2([0, 1],R) as:

D1/2,1z(ζ) = Az(ζ) + f(ζ, z(ζ),Kz(ζ)), ζ ∈ [0, 1/3) ∪ [2/3, 1]

z(ζ) = g(ζ, z(ζ)) ζ ∈ [1/3, 2/3)
(16)

over the interval [0, 1] by de�ning z(ζ) = u(ζ, ·), operator Au = u′′ (second
order derivative with respect to ζ). The functions f and g over respected

domains are de�ned as f(ζ, z(ζ),Kz(ζ)) = 1
50

∫ ζ
0 e

−z(τ)dτ and g(ζ, z(ζ)) =
z(ζ)

10(1+z2(ζ))
respectively.

The equation (16) satis�es the conditions (B1-B5) of the hypothesis with
M∗

0h
∗ < 1 and M∗

0 g
∗ < 1. Hence the equation (16) has a mild solution over

the interval [0, 1].

5. Conclusion This manuscript established the results concerning the
mild solutions of non-instantaneous impulsive fractional integro-di�erential
evolution system on the Banach space U by considering classical as well as
non-local conditions. These results are obtained using the concept of non-
linear functional analysis and �xed point theorems. Using these results one can
obtain a mild solution for the non-instantaneous impulsive Hilfer fractional
integro-di�erential system.
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O rozwi¡zaniu impulsowego uªamkowego ukªadu

caªkowo-ró»nicowego Hilfera z opó¹nieniem.

Gargi J. Trivedi, Vishant Shah, Jaita Sharma, Rajesh Sanghvi

Streszczenie Artykuª po±wi¦cony jest uªamkowym, z opó¹nieniem, systemom ewo-
lucji caªkowo-ró»niczkowej opisanym uªamkowym operatorem ró»niczkowym Hilfera
w przestrzeni Banacha. Analizowane jest istnienia gªadkiego rozwi¡zania równania z
warunkami lokalnymi i nielokalnymi. Wyniki uzyskano stosuj¡c do operatora C0 ge-
nerowanego przez liniow¡ cz¦±¢ równania metody nieliniowej analizy funkcjonalnej
z twierdzeniami o punkcie staªym. Zamieszczone przykªady podkre±laj¡ znaczenie
otrzymanych wyników.

Klasy�kacja tematyczna AMS (2010): [034A08, 47H10, 47H20].

Sªowa kluczowe: Uªamkowe równanie ewolucji, uªamkowy operator ró»niczkowy Hil-
fera, póªgrupa operatorów, impulsy opó¹nione, twierdzenie o punkcie staªym..
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