PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthesis and Kinetic Study of a PCL-GAP-PCL Tri-block Copolymer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An energetic tri-block copolymer PCL-GAP-PCL (Mn = 1794) was synthesized by a ring-opening polymerization of ε-caprolactone with glycidyl azide polymer (GAP) of low molecular weight (Mn = 1006 g/mol) as initiator, in the presence of dibutyltin dilaurate (DBTDL) as catalyst, at 100 °C in the absence of solvent. The products obtained in high yield were characterized by FTIR, gel permeation chromatography (GPC), and 1H and 13C NMR spectroscopy. Thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) were used to study the thermal behaviour of the polymers. An advanced isoconversional method has been applied for kinetic analysis. The activation energy, calculated by the Flynn-Wall-Ozawa (FWO) and Kissinger methods, and thermal analysis revealed that the tri-block copolymer has greater thermal stability than homopolymer GAP. The results of the activation energies from the Kissinger method for the first and second steps were 180.3 kJ·mol−1 and 209.8 kJ·mol−1, respectively. Furthermore, for the copolymer, the activation energy versus the level of conversion was calculated by the FWO method. The glass transition temperature (Tg) for GAP was influenced by the PCL blocks; as a result the copolymer (Tg = −64 °C) showed better thermal properties than homopolymer GAP (Tg = −48 °C).
Rocznik
Strony
243--257
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran
autor
  • Department of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran
Bibliografia
  • [1] Subramanian, K. Hydroxyl-terminated Poly(azidomethyl Ethylene Oxide-bbutadiene-b-azidomethyl Ethylene Oxide) − Synthesis, Characterization and Its Potential as a Propellant Binder. Eur. Polym. J. 1999, 35(8): 1403-1411.
  • [2] Frankel, M.; Grant, L.; Flanagan, J. Historical Development of Glycidyl Azide Polymer. J. Propul. Power 1992, 8(3): 560-563.
  • [3] Sun Min, B. Characterization of the Plasticized GAP/PEG and GAP/PCL Block Copolyurethane Binder Matrices and Its Propellants. Propellants Explos. Pyrotech. 2008, 33(2): 131-138.
  • [4] Mohan, Y. M.; Raju, M. P.; Raju, K. M. Synthesis and Characterization of GAPPEG Copolymers. Int. J. Polymer. Mater. 2005, 54(7): 651-666.
  • [5] Min, B. S.; Baek, G.; Ko, S. W. Characterization of Polyether-type GAP and PEG Blend Matrices Prepared with Varying Ratios of Different Curatives. J. Ind. Eng. Chem. 2007, 13(3): 373-379.
  • [6] Min, B. S.; Ko, S. W. Characterization of Segmented Block Copolyurethane Network Based on Glycidyl Azide Polymer and Polycaprolactone. Macromolecular Research 2007, 15(3): 225-233.
  • [7] Provatas, A. Energetic Polymers and Plasticisers for Explosive Formulations – A Review of Recent Advances. DTIC Document, 2000.
  • [8] Min, B.-S. Synthesis of Azide-terminated Glycidyl Azide Polymer with Low Molecular Weight. J. Korea. Inst. Mil. Sci. Technol. 2005, 8(1): 69-80.
  • [9] Kolonko, K. J.; Barnes, M. W.; Biegert, L. L. High Molecular Weight Polycaprolactone Prepolymers Used in High-energy Formulations. Patent US 4775432, 1988.
  • [10] Wang, Y.; Rodriguez‐Perez, M. A.; Reis, R. L.; Mano, J. F. Thermal and Thermomechanical Behaviour of Polycaprolactone and Starch/Polycaprolactone Blends for Biomedical Applications. Macromol. Mater. Eng. 2005, 290(8): 792-801.
  • [11] Sivalingam, G.; Karthik, R.; Madras, G. Kinetics of Thermal Degradation of Poly (ε-Caprolactone). J. Anal. Appl. Pyrolysis 2003, 70(2): 631-647.
  • [12] Selim, K.; Özkar, S.; Yilmaz, L. Thermal Characterization of Glycidyl Azide Polymer (GAP) and GAP‐based Binders for Composite Propellants. J. Appl. Polym. Sci. 2000, 77(3): 538-546.
  • [13] Kubota, N.; Sonobe, T. Combustion Mechanism of Azide Polymer. Propellants Explos. Pyrotech. 1988, 13(6): 172-177.
  • [14] Pisharath, S.; Ang, H. G. Thermal Decomposition Kinetics of a Mixture of Energetic Polymer and Nitramine Oxidizer. Thermochim. Acta 2007, 459(1): 26-33.
  • [15] Lua, A. C.; Su, J. Isothermal and Non-isothermal Pyrolysis Kinetics of Kapton®Polyimide. Polym. Degrad. Stab. 2006, 91(1): 144-153.
  • [16] Sivalingam, G.; De, P.; Karthik, R.; Madras, G. Thermal Degradation Kinetics of Vinyl Polyperoxide Copolymers. Polym. Degrad. Stab. 2004, 84(1): 173-179.
  • [17] Morancho, J.; Salla, J.; Ramis, X.; Cadenato, A. Comparative Study of the Degradation Kinetics of Three Powder Thermoset Coatings. Thermochim. Acta 2004, 419(1): 181-187.
  • [18] Ries, A.; Canedo, E. L.; Souto, C. R.; Wellen, R. M. Non-isothermal Cold Crystallization Kinetics of Poly (3-Hydroxybutyrate) Filled with Zinc Oxide. Thermochim. Acta 2016, 637: 74-81.
  • [19] Singh, A.; Sharma, T. C.; Kumar, M.; Narang, J. K.; Kishore, P.; Srivastava, A. Thermal Decomposition and Kinetics of Plastic Bonded Explosives Based on Mixture of HMX and TATB with Polymer Matrices. Defence Technology 2017, 13(1): 22-32.
  • [20] Wang, D.-Y.; Wang, Y.-Z.; Wang, J.-S.; Chen, D.-Q.; Zhou, Q.; Yang, B.; Li, W.-Y. Thermal Oxidative Degradation Behaviours of Flame-Retardant Copolyesters Containing Phosphorous Linked Pendent Group/Montmorillonite Nanocomposites. Polym. Degrad. Stab. 2005, 87(1): 171-176.
  • [21] Pisharath, S.; Ang, H. G. Synthesis and Thermal Decomposition of GAP–Poly(BAMO) Copolymer. Polym. Degrad. Stab. 2007, 92(7): 1365-1377.
  • [22] Guo, M.; Ma, Z.; He, L.; He, W.; Wang, Y. Effect of Varied Proportion of GAP-ETPE/NC as Binder on Thermal Decomposition Behaviors, Stability and Mechanical Properties of Nitramine Propellants. J. Therm. Anal. Calorim. 2017, 130(2): 909-918.
  • [23] Li, H.; Pan, R.; Wang, W.; Zhang, L. Thermal Decomposition and Kinetics Studies on Poly (BDFAO/THF), Poly(DFAMO/THF), and Poly(BDFAO/DFAMO/THF). J. Therm. Anal. Calorim. 2014, 118(1): 189-196.
  • [24] Eroğlu, M. S.; Hazer, B.; Güven, O. Synthesis and Characterization of Hydroxyl Terminated Poly(Butadiene)-g-poly(Glycidyl Azide) Copolymer as a New Energetic Propellant Binder. Polym. Bull. 1996, 36(6): 695-701.
  • [25] Eroğlu, M. S.; Hazer, B.; Güven, O.; Baysal, B. N. M. Preparation and Thermal Characterization of Block Copolymers by Macroazonitriles Having Glycidyl Azide and Epichlorohydrin Moieties. J. Appl. Polym. Sci. 1996, 60(12): 2141-2147.
  • [26] Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and Kinetics of Thermal Degradation of Poly(ε-Caprolactone). Biomacromolecules 2001, 2(1): 288-294.
  • [27] Salla, J.; Morancho, J.; Cadenato, A.; Ramis, X. Non-isothermal Degradation of a Thermoset Powder Coating in Inert and Oxidant Atmospheres. J. Therm. Anal. Calorim. 2003, 72(2), 719-728.
  • [28] Li, L.; Guan, C.; Zhang, A.; Chen, D.; Qing, Z. Thermal Stabilities and the Thermal Degradation Kinetics of Polyimides. Polym. Degrad. Stab. 2004, 84(3): 369-373.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9f5aeec-dbb6-40dc-8eb6-f1f47ff3498b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.