PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rainwater potential use in dormitory building: drinking water savings and economic costs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwości wykorzystania wody deszczowej w domu studenckim: oszczędność wody pitnej i korzyści finansowe
Języki publikacji
EN
Abstrakty
EN
Climate change, improper use of water resources, surface waters pollution as well as increase of water requirements are the results of growing population of people in the world. It causes that the most countries, including Poland, are faced with the deficit of water. Because of this a variety of measures are taken continuously in order to reduce the depletion of the global water resources, eg using rainwater in toilet flushing, car washing, washing machines, irrigation of arable land or watering green areas. The use of this type of solutions may also decrease fees charged for water supply to buildings which often constitute a substantial part of their upkeep expenses. In this paper, the financial effectiveness of the use of the rainwater harvesting system (RWHS) for toilet flushing is presented. The analysis was conducted using a simulation model and as a subject of study a dwelling-house (a dormitory) located in Poland was chosen. The study also analyzed the influence of a retention tank size on efficiency of the economic use of rainwater utilization system for the dormitory. In the financial analysis two financial ratios were determined: the Net Present Value (NPV) and the Discounted Payback Period (DPP), and sensitivity studies were conducted as well. The conducted analysis demonstrated that the use of the RWHS system in the analyzed building is cost-effective and that it may reduce water requirement for toilet flushing by 11 to 22%, depending on the capacity of the retention tank.
PL
W pracy przedstawiono wyniki badań określające efektywność finansową systemu wykorzystania wody deszczowej (RWHS) do spłukiwania toalet. Jako przedmiot badań wybrano budynek mieszkalny (akademik) zlokalizowany w Polsce. Analizę funkcjonowania systemu RWHS przeprowadzono na sformułowanym modelu symulacyjnym. W badaniach przeanalizowano również wpływ wielkości zbiornika retencyjnego na efektywność finansową zastosowania systemu gospodarczego wykorzystania wody deszczowej w rozpatrywanym domu studenckim. W analizie finansowej zostały określone dwa wskaźniki finansowe: wartość bieżąca netto (NPV) oraz zdyskontowany okres zwrotu (DPP). W celu oceny ryzyka inwestycyjnego związanego z zastosowaniem systemu gospodarczego wykorzystania wody deszczowej w badanym akademiku wykonano analizę wrażliwości inwestycji. W tym celu wyznaczono współczynniki wrażliwości inwestycji sc, które obrazuj ą, jak duży wpływ na otrzymaną wartość NPV wywiera zmiana wartości poszczególnych zmiennych niezależnych o 1%. Przeprowadzona analiza wykazała, że zastosowanie układu RWHS w analizowanym budynku jest opłacalne i może zmniejszyć zapotrzebowanie na wodę do spłukiwania toalet od 11 do 22%, w zależności od pojemności zbiornika retencyjnego.
Rocznik
Strony
43--64
Opis fizyczny
Bibliogr. 43 poz., wykr., tab., rys.
Twórcy
autor
  • Department of Infrastructure and Water Management, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35–959 Rzeszów, Poland, phone: +48 17 865 11 51, fax: +48 17 865 1172.
autor
  • Department of Infrastructure and Water Management, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35–959 Rzeszów, Poland, phone: +48 17 865 11 51, fax: +48 17 865 1172.
Bibliografia
  • [1] 2030 Water Resources Group. Charting Our Water Future. Economic frameworks to inform decisionmaking; 2009. http://www.mckinsey.com/Client_Service/Sustainability/Latest_thinking/Charting_our_water_ future.
  • [2] United Nations. The Millennium Development Goals Report; 2012a. www.un.org/millenniumgoals/pdf/MDG%20Report%202012.pdf.
  • [3] UNESCO. Managing Water under Uncertainty and Risk. The United Nations World Water Development Report 4; 2012. www.unwater.org/publications/world-water-development-report/en.
  • [4] http://water.org/water-crisis/water-facts/water.
  • [5] United Nations. Resolution 64/292. The human right to water and sanitation; 2010. www.un.org/waterforlifedecade/human_right_to_water.shtml.
  • [6] United Nations. UN-Water Annual Report; 2012. www.unwater.org/downloads/UN-Water_Annual_Report_2012.pdf.
  • [7] Huang L, Yeh C, Chang F. The transition to an urbanizing world and the demand for natural resources. Curr Opin Environ Sustain. 2010;2:136-143. DOI: 10.1016/j.cosust.2010.06.004.
  • [8] Yao M, Wang C, Zhang C, Chen K, Song P. The influencing factors of resources and environments in the process of urbanization of China. Prog Geogr. 2008;27(3):94-100. DOI: 10.11820/dlkxjz.2008.03.014
  • [9] EEA. Towards efficient use of water resources in Europe. European Environment Agency, EEA Report No1/2012, 68pp. Copenhagen. 2012. DOI: 0.2800/95096.
  • [10] Hotloś H. Quantity and availability of freshwater resources: the world – Europe – Poland. Environ Prot Eng. 2008;34:67-77. https://www.google.pl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjE7YGOwOXTAhXMHpoKHZIcBl8QFggqMAE&url=http%3A%2F%2 Fepe.pwr.wroc.pl%2F2008%2FHotlos_2-2008.pdf&usg=AFQjCNGSQDhJVXtWp7ZOgFzdTwi-Kjz3tA.
  • [11] Pandey DN, Gupta AK, Anderson DM. Rainwater harvesting as an adaptation to climate change. Current Sci. 2003;85(1):46-59. http://sa.indiaenvironmentportal.org.in/files/Rainwater%20harvesting%20as%20an%20adaptation.pdf.
  • [12] Sales JC, Konig KW, Lo A. Rainwater harvesting providing adaptation opportunities to climate change. In: Barron J. (Ed), Rainwater Harvesting: A Lifeline for Human Well-being. A report Prepared for UNEP by Stockholm Environment Institute York. Stockholm Resilience Centre, Sweden, 2009.
  • [13] Mwenge Kahinda J, Taigbenu AE, Boroto RJ. Domestic rainwater harvesting as an adaptation measure to climate change in South Africa. Phys Chem Earth. 2010;35:742-751. DOI: 10.1016/j.pce.2010.07.004.
  • [14] Imteaz MA, Shanableh A, Rahman A, Ahsan A. Optimisation of rainwater tank design from large roofs: A case study in Melbourne, Australia. Resour Conserv Recycl. 2011;55:1022-1029. DOI: 10.1016/j.resconrec.2011.05.013.
  • [15] Villarreal EL, Dixon A. Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrkoping, Sweden. Build Environ. 2005;40;1174-84. DOI: 10.1016/j.buildenv.2004.10.018.
  • [16] Furumai H. Rainwater and reclaimed wastewater for sustainable urban water use. Phys Chem Earth. 2008;33:340-346. DOI: 10.1016/j.pce.2008.02.029.
  • [17] Jones M, Hunt W. Performance of rainwater harvesting systems in the southeastern United States. Resour Conserv Recycl 2010;54:623-629. DOI: 10.1016/j.resconrec.2009.11.002.
  • [18] Coombes P. Rainwater Tanks Revisited: New opportunities for urban water cycle management. The University of Newcastle, Australia; 2003. https://urbanwatercyclesolutions.com/ rainwater-tanksrevisited-new-opportunities-for-integrated-water-cycle-managemen/.
  • [19] Ghisi E, Tavares D, Rocha V. Rainwater harvesting in petrol stations in Brasilia: Potential for notable water savings and investment feasibility analysis. Resour Conserv Recycl. 2009;54:79-85. DOI: 10.1016/j.resconrec.2009.06.010.
  • [20] Mourad K, Berndtsson R. Potential water saving from rainwater harvesting in Syria. J Water Manage Res. 2011;67:113-117. http://lup.lub.lu.se/record/2214878.
  • [21] Ghisi E, Oliveira S. Potential for potable water savings by combining the use of rainwater and greywater in houses in southern Brazil. Build Environ. 2007;42:1731-1742. DOI: 10.1016/j.buildenv.2006.02.001.
  • [22] Fewkes A. Modelling the performance of rainwater collection systems: towards a generalized approach. Urban Water 1999;1.323-333. DOI: 10.1016/S1462-0758(00)00026-1.
  • [23] Ghisi E, Ferreira D. Potential for potable water savings by using rainwater and greywater in a multi--storey residential building in southern Brazil. Build Environ. 2007;42:2512-2522. DOI: 10.1016/j.buildenv.2006.07.019.
  • [24] Ghisi E. Potential for potable water savings by using rainwater in the residential sector of Brazil. Build Environ. 2006;41:1544-1550. DOI: 10.1016/j.buildenv.2005.03.018.
  • [25] Zaizen M, Urakawa T, Matsumoto Y, Takai H. The collection of rainwater from dome stadiums in Japan. Urban Water. 1999;1:355-359. DOI: 10.1016/S1462-0758(00)00028-5.
  • [26] Appan A. A dual-mode system for harnessing roofwater for non-potable uses. Urban Water. 1999;1:317-321. DOI: 10.1016/S1462-0758(00)00025-X.
  • [27] Chilton J, Maidment G, Marriott D, Francis A, Tobias G. Case study of rainwater recovery system in a commercial building with a large roof. Urban Water. 1999;1:345-354.DOI: 10.1016/S1462-0758(00)00032-7.
  • [28] Prśnça LC, Ghisi E. Assessment of potable water savings in office buildings considering embodied energy. Water Resour Manage. 2013;27;581-599. DOI: 10.1007/s11269-012-0203-1.
  • [29] Ward S, Memon FA, Butler D. Performance of a large building rainwater harvesting system. Water Res. 2012;46:5127-5134. DOI: 10.1016/j.watres.2012.06.043.
  • [30] Rahman A, Keane J, Imteaz MA, Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits. Resour Conserv Recycl. 2012;61;16-21. DOI: 10.1016/j.resconrec.2011.12.002.
  • [31] Ghimire SR, Watkins DW, Li K. Life cycle cost assessment of a rain water harvesting system for toilet flushing. Water Sci Technol: Water Supply. 2012;12(3):309-320. DOI: 10.2166/ws.2011.135.
  • [32] Farrenya R, Gabarrella X, Rieradevall J. Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighborhoods. Resour Conserv Recycl. 2011;55:686-694. DOI: 10.1016/j.resconrec.2011.01.008.
  • [33] Roebuck RM, Oltean-Dumbrava C, Tait S. Whole life cost performance of domestic rainwater harvesting systems in the United Kingdom. Water Environ J. 2011;25:355-365. DOI: 10.1111/j.1747-6593.2010.00230.x.
  • [34] Gotur PS, Devendrappa S. Benefits and economic viability of domestic rooftop rainwater harvesting. Int J Farm Sci. 2011;2:124-130.
  • [35] Słyś D, Stec A, Zeleňáková M. A LCC analysis of rainwater management variants. Ecol Chem Eng S. 2012;19(3):359-372. DOI: 10.2478/v10216-011-0026-7.
  • [36] Słyś D. Potential of rainwater utilization in residential housing in Poland. Water Environ J. 2009;23:318-325. DOI: 10.1111/j.1747-6593.2008.00159.x.
  • [37] Stec A., Kordana S. Analysis of profitability of rainwater harvesting, gray water recycling and drain water heat recovery systems. Resour Conserv Recycl. 2015;105:84-94. DOI: 10.1016/j.resconrec.2015.10.006.
  • [38] Chudzicki J, Sosnowski S. Instalacje wodociągowe: projektowanie, wykonanie, eksploatacja (Water Supply Systems: Design, Construction, Operation), second ed. Seidel-Przywecki Sp. z o.o, Warszawa; 2009.
  • [39] Brigham EF, Ehrhardt MC. Financial management: Theory and practice. South-Western Cengage Learning, Mason; 2008.
  • [40] Morales-Pinzón T, Lurueńa R, Gabarrell X, Gasol CM, Rieradevall J. Financial and environmental modeling of water hardness – implications for utilizing harvested rainwater in washing machines. Sci Total Environ. 2014;470-471:1257-1271. DOI: 10.1016/j.scitotenv.2013.10.101.
  • [41] Liaw C, Tsai Y. Optimum storage volume of rooftop rain water harvesting systems for domestic use. J Am Water Resour Assoc. 2004;40:901-912. DOI: 10.1111/j.1752-1688.2004.tb01054.x.
  • [42] Ehrhardt MC, Brigham EF. Corporate Finance: A focused approach. South-Western Cengage Learning, Mason; 2011.
  • [43] Rogowski W. Rachunek efektywności przedsięwzięć inwestycyjnych (Investment Effectiveness Calculus) Kraków: Oficyna Ekonomiczna; 2008.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9eed159-0539-4575-8f71-e2b63b11b730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.