PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental Impact Assessment of Discharged Heavy Metals in Textile Production

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wpływu na środowisko metali ciężkich uwalnianych podczas produkcji tekstyliów
Języki publikacji
EN
Abstrakty
EN
Heavy metals discharged from textile production have serious impacts on human beings and the environment. Chemical footprint (ChF) methodology is an important method in quantifying the environmental loads of discharged chemical pollutants. With the help of ChF methodology, this study used the mean impact method to assess the environmental loads of heavy metals discharged from a textile enterprise. The results showed that the ChFs of discharged heavy metals calculated based on the aquatic environment of Lake Tai and Lake Poyang were 1.43E+8L and 4.64E+8L respectively. Zinc was the largest contributor, followed by copper, lead and cadmium for the two lakes.
PL
Metale ciężkie uwalniane podczas produkcji tekstyliów mają poważny wpływ na ludzi i środowisko. Metodologia określania śladu chemicznego (ChF) jest ważną metodą ilościowego określania obciążenia środowiska przez zanieczyszczenia chemiczne. Z pomocą metodologii ChF w badaniu wykorzystano metodę średniego wpływu do oceny obciążeń środowiskowych metali ciężkich uwalnianych z przedsiębiorstwa włókienniczego. Wyniki pokazały, że współczynniki ChF odprowadzonych metali ciężkich obliczone na podstawie środowiska wodnego Jezior Tai i Poyang wynosiły odpowiednio 1,43E + 8L i 4,64E + 8L. Cynk był największą składową, a za nim miedź, ołów i kadm w przypadku obu jezior.
Rocznik
Strony
66--69
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Zhejiang Sci-Tech University, Silk and Fashion Culture Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, Chin
autor
  • Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Zhejiang Sci-Tech University, Silk and Fashion Culture Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, Chin
autor
  • Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Zhejiang Sci-Tech University, Silk and Fashion Culture Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, Chin
autor
  • Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Zhejiang Sci-Tech University, Silk and Fashion Culture Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, Chin
autor
  • Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Zhejiang Sci-Tech University, Silk and Fashion Culture Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, Chin
autor
  • Zhejiang Provincial Research Center of Clothing Engineering Technology, Hangzhou, Zhejiang 310018, China
  • Zhejiang Sci-Tech University, Silk and Fashion Culture Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, Chin
  • Zhejiang Academy of Ecological Civilization, Hangzhou 310018, China
Bibliografia
  • 1. Yu L, Jiang YY. Strengthening Chemical Management is the Need of Sustainable Development of Human Society. 2008 Annual Meeting of Shanghai Society of Environmental Sciences; Shanghai, China: Shanghai Scientific & Technical Publishers; 2008, 51-54.
  • 2. Guo J, Deng D. Extended Suspect Screening Strategy to Identify Characteristic Toxicants in the Discharge of a Chemical Industrial Park Based on Toxicity to Daphnia Magna. SCI TOTAL ENVIRON 2019; 650(10): 10-17.
  • 3. Wang LL, Wu XY. Calculation and Assessment of Industrial Water Footprint of Textiles and Apparel. J Text Res. 2017; 38(9): 162-167.
  • 4. Rainbow PS. Trace Metal Bioaccumulation: Models, Metabolic Availability and Toxicity [J]. Environment International. ENVIRON INT. 2007; 33(4): 576-582.
  • 5. Islam E, Yang XE. Assessing Potential Dietary Toxicity Of Heavy Metals In Selected Vegetables And Food Crops. J Zhejiang Univ Sci B. 2007; 8(1): 1-13.
  • 6. Huang XF, Qin FX. Review on Studies of Heavy Metal Pollution and Chemical Speciation. Stud Trace Elem Health 2008; 25(1): 48-51.
  • 7. Panko J, Hitchcock K. Chemical Footprint Ensuring Product Sustainability. J AIR WASTE MANAGE 2011; 11-15.
  • 8. Du CH, Wang ZY, Chen JW, et al. Chemical Footprint: Concepts, Research Progress and Challenges. Asian J Ecotox. 2016; 11(2): 18-26.
  • 9. Posthuma L, Bjørn A, Zijp MC, et al. Beyond Safe Operating Space: Finding Chemical Footprinting Feasible. Environ Sci Technol. 2014; 48(11): 6057-6059.
  • 10. Zijp MC, Posthuma L. Definition and Applications of a Versatile Chemical Pollution Footprint Methodology. Environ Sci Technol. 2014; 48(18): 10588-10597.
  • 11. Tipping E, Rey-Castro C. Al (III) and Fe (III) Binding by Humic Substances in Freshwaters, and Implications for Trace Metal Speciation. GEOCHIM COSMOCHIM AC. 2002; 66(18): 3211-3224.
  • 12. Paquin PR, Gorsuch JW. The Biotic Ligand Model: A Historical Overview. COMP BIOCHEM PHYS C. 2002; 133(1-2): 3-35.
  • 13. Niyogi S, Wood C M. Biotic Ligand Model, a Flexible Tool for Developing Site-Specific Water Quality Guidelines for Metals. ENVIRON SCI TECHNOL. 2004; 38(23): 6177-6192.
  • 14. Du CH. Calculation and Characterization on Chemicals Footprint of Antibiotics in China. Dalian University of Technology, Dalian. 2017.
  • 15. Institute of Public & Environmental Affairs database [http://www.ipe.org.cn/index.html]. c2019 [updated 2019 Jan 1; cited 2020 Apr 12]. Available from: http://www.ipe.org.cn/IndustryRecord/Regulatory.html?keycode=4543j9f9ri334233r3rixxxyyo12/.
  • 16. Ye HM, Yuan XY. Water Chemistry Characteristics and Controlling Factors in the Northern Rivers in the Taihu Basin. Ecol Environ Sci. 2010; 19(1): 23-27.
  • 17. Zhang YL, Huang QF. Retrieving of Dissolved Organic Carbon based on Irradiance Reflectance in Typical Lake Zones of Lake Taihu. ADV IN EARTH SCI. 2005; 20(7): 772-777.
  • 18. Zhang X, Zhou X. Seasonal Variation Regularity and Mutation Cause of Ph in Raw Water of Taihu Lake. Water Technol 2015; 9(5): 21-25.
  • 19. Hu CH, Zhou WB. Characteristics of Major Ions and the Influence Factors in Poyang Lake. Catchment Environ Chem. 2011; 30(9): 1620-1626.
  • 20. Liu RQ, Zhang SY. Multivariable Analyzing and Comparing of Water Quality of Shallow Lakes in Middle and Lower Reaches of Changjiang River. ACTA HYDROBIOL SIN. 2000; 24(5): 439-445.
  • 21. Lu SC, Jiao RY, Wang F, et al. Characteristics and Chemical Composition Of DOC Linking to the Partial Pressure of Carbon Dioxide in The Lake-River Systems of Lower Changjiang River Basin. Acta Sci Circum. 2018; 38(5): 349-359.
  • 22. Wood CM, Al-Reasi HA. The two faces of DOC. AQUAT TOXICOL. 2011; 105(3-4): 3-8.
  • 23. McDonald DG. The Interaction of Environmental Calcium and Low Ph on the Physiology of the Rainbow Trout, Salmo Gairdneri: I. Branchial And Renal Net Ion And H+ Fluxes. J EXP BIOL. 1983; 102(1): 123-140.
  • 24. Hunn J B. Role of Calcium in Gill Function in Freshwater Fishes. COMP BIOCHEM PHYS A. 1985; 82(3): 543-547.
  • 25. Campbel PGC, Stokes PM. Acidification and Toxicity of Metals to Aquatic Biota. CAN J FISH AQUAT SCI. 1985; 42(12): 2034-2049.
  • 26. Chen R, Wu M, Wang WB. Prediction of Copper Toxicity for Cyclops and the Effect of Water Quality Parameters Using Biotic Ligand Model. Environ Chem. 2017; 36(4): 716-723.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9eed064-8882-49c9-b6b9-f5fd6f09cd9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.