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Summary. A method for finding a compromise solving of multicriteria optimiza-
tion problems with flexible limit constraints has been considered. The application 
of the method at simultaneous profit optimization and company’s revenue has 
been regarded. 
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1.  MULTI-CRITERIA SOLVING WITH FLEXIBLE CONSTRAINTS 

Depending on the relationship between alternative action plans and consequences, 
deterministic and non-deterministic decision-making problems are distinguished, and in 
terms of optimality – one-criterial and multi-criteria ones. In non-deterministic prob-
lems, some variables and parameters of an economic model are usually indeterminate, 
that is, for their values, only the intervals in which they can be are known. The exact 
values of such variables at the time of the decision-making can not be uniquely estab-
lished. 
Uncertain factors may occur, in particular, in the following cases: 
•  People who do not pursue the same goals as those of their researcher may participate 

in the economic situation being investigated. For example, when planning a foreign 
trade of some state it is necessary to take into account the possible actions of other 
countries. It is often impossible to predict these actions. 

•  Uncertain factors may arise due to the uncertainty of some of the processes or varia-
bles. A typical example of such a factor is weather conditions. Therefore, such un-
certainties are often called natural. 

•  Uncertain factors also often include parameters of the efficiency criterion (target 
functions), which is the evaluation of various impacts on the managed system if 
these parameters are not well-known enough. 

Let D be the domain of permissible solutions and .x D∈  
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In the above list of the most typical situations in the case of problems with uncer-
tain factors, in the first place there is an impact on the situation of subjects that do not 
pursue the same goals as the researcher of the system. 

In multicriteria optimization problems, there are several target functions 
1 1 2 2( ),  z ( ),...,  ( ),= = =m mz f x f x z f x each of which can reach its maximum values at 

different points. In this case, the decision maker (PDM) must describe not only the 
domain of the permissible values D of the target function, but also specify the principle 
of choosing the final solution. Therefore, in the solution of multicriteria problems the 
role of the subjective factor, the role of knowledge and intuition of PDM increases in 
comparison with one-criterion problems. 

As an example, let’s consider the following problem [4]. Let the matrix A be the 
matrix of cost standards (technological matrix), Q – resource prices, P – prices of sales 
of products, B – reserves of resources. Then, if x units of production are planned, the 
cost of the necessary resources equals ,QAx unpredictable revenue – ,Px and the profit 
is also unpredictable and makes up W Px QAx= − of the monetary units. 

When solving such problems one can achieve simultaneous maximization of both 
revenue and profit. The optimization model of the formulated problem with two criteria 
will look like: 

 
max,

( ) max,
Px
P QA x
→
− →

  (1) 

under conditions 
,   0.Ax B x≤ ≥  

Let’s specify (1), taking in it 

1 2 20
1 1 ,   (1,   1,   4),  (17,   12),   15 .
3 1 39

A Q P B
   
   = = = =   
   
   

 

Then in the expanded form the proposed model will look like: 

 1 1 217 12 max,z x x= + →   (2) 

 2 1 23 5 max,z x x= + →      (3) 

 

1 2

1 2

1 2

1 2

2 20,
15,

3 39,
, 0.

x x
x x
x x

x x

+ ≤
+ ≤
+ ≤
≥

    (4) 

It is easy to guess that the maximum value (2) under conditions (4) will be  
obtained at the point (12, 3). It is equivalent to max

1 (12,  3) 240.z =  It is analogical for  

(3)–(4) max
2 (10,  5) 55.z =   

The final choice of the best solution for PDM. 
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In the proposed work, the choice of the best solution in multicriteria optimization 
problems is realized on the basis of finding a compromise solution to the problem of 
linear programming with flexible threshold constraints. 

2. LINEAR VECTOR-OPTIMIZATION MODEL WITH FLEXIBLE 
BOUNDARY CONSTRAINTS 

Let in some constraints 

 1 1 ...i in n ia x a x b+ + ≤    (5) 

of the linear programming problems (LP) the limit ib  vary up to ,i ib d+ where 0,id ≥  
whereby different deviations from the value ib are attributed to different limits of ad-
missibility (the greater the deviation, the smaller the degree of its admissibility). This 
case is often encountered in practice. For example, the manufacturer is convinced that 
he needs to have the necessary raw materials ib with high reliability and according to 
the supposed adjusted price. But he also believes that he needs to buy the next volumes 
of this raw material ,i ib d+ but without the guaranteed delivery of the surplus part, as 
well as its possible higher price. 

Such a structure will be presented as follows 

 1 1( ) ... ,  ,i i in n i i ig x a x a x b b d≡ + + ≤ +   (6) 

where the “flexible” ratio « ≤ » should be interpreted as trying to surpass ,ib but remain 
in any case less than i ib d+ ». 

Flexible relation (6) can be formalized on the basis of constructing its membership 
function 

 ( ) : [0,1]i ig Rµ →  

with the following properties: 
1)  ( ) 1  for  ,i i i ig g bµ = ≤     
2)  ( ) 0  for  ,i i i i ig g b dµ = > +      
3)  ( ) [0,1]  for  ,i i i i i ig b g b dµ ∈ < ≤ +     
4)  ( )i igµ  monotonously falls on [ ,  ].i i ib b d+  

The most used (with properties 1) – 4)) membership functions are linear and 
piecewise linear membership functions [6]. An analytic record of the simplest linear 
membership function is: 

 

1                   for   ,

( ) 1       for   ,

0                  for   .

g b
g bx b g b d

d
g b d

µ

≤
 −= − < ≤ +


> +

  (7) 

Here, for the sake of simplicity, the index i is not used. 
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Let’s consider the simplest Fuzzy-LP-Models 

 
1 1( )

( ) ..... ....
( )k k

z x c x
Z x

z x c x

•   
   = =   
   •   

  (8) 

under conditions 
 1( ) ,  ,   1, ,i i i i ig x a x b b d i m≡ ⋅ ≤ + =  

 1( ) ,   1,  ,i i ig x a x b i m m≡ ⋅ ≤ = +  
 0x ≥  
with really significant vectors 

 1 1 1( , ..., ),   ( , ..., ),   1, ,   ( , ..., ),   1,n j j jn i i inx x x c c c j k a a a i m= = = = =  

and actual values 1,  1, ;  0,  1, .i ib i m d i m= > =         
In (8), the symbol «• » means a scalar product. 
Let’s assume now that in the model (8) for each 11,i m= there is a membership 

function ( )i xµ with the properties 1) – 4). For the defuzzification of the model (8) we 
shall consider iµ as piecewise linear continuous functions. We introduce for (8) the 
notion of the set of admissible solutions (universal set):   

 1 1{ | ( )   1,   i ( )   1,  },u n i i i i iX x X g x b d i m g x b i m m+= ∈ < + ∀ = ≤ ∀ = +  

where nX + −  an integral half-space of the Euclidean space ,nR  and a set 

 { | ( ) ,  1, }.s n i iX x X g x b i m+= ∈ ≤ =  

To establish a meaningful compromise solution of the model (8) it is necessary to 
compare different target values ( ),jz x  where 1, .j k=  To do this, first of all, it is neces-
sary to find the optimal solution of the LP model 

  max ( ),j
x Xu

z x
∈

  (9) 

where  1, .j k=  

The maximal values obtained here will be denoted as  **( ),  1, .j j jz z x j k= =  Then 
the PDM chooses 
 1ziµ =  for ,  1, .j jz z j k≥ =  (10) 

The lower bounds of the target functions are selected as follows: 

 min( , ),   1, ,s u
j j jz z z j k= =  

where 
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          ** ** ** **
1 1 1min( ( ), ..., ( ), ( ), ..., ( ))u

j j j j j j kjz z x z x z x z x− +  

and   * * * *
1 1 1min( ( ), ..., ( ), ( ), ..., ( )),s

j j j j j j kjz z x z x z x z x− +=  

where * ,   1,jx j k= −  optimal solution of the LP model (9). 

For j jz z≤  the equality is fulfilled 0,  1, .z j j kµ = =  

As it is shown in [5, 6], optimizing, the system (8) is defuzzified in its equivalent 

   maxλ →  (11) 
under conditions 
 ( ),   1, ,z j x j kλ µ≤ =  

 1( ),   1, ,i x i mλ µ≤ =  
 ,   0.ux X λ∈ ≥  

As it has been already described above, we approximate the membership functions 
( ),  1,z j x j kµ = and 1( ),  1, ,i x i mµ = that are in (11), by continuous piecewise linear 

functions (in order for the model (11) to be linear). In addition, we will assume that 
PDM, knowing jz  and ,   1, ,jz j k=  as well as 1, ,  1, ,i i ib b d i m+ = for each purpose 
and each exceedance of restrictions, indicates the level of requirements 

 ] , [ i [ [A A
j j i i jjz z z g b d∈ ∈ + . (12) 

If PDM is unable to select one or more of these requirements, we recommend that 
these values should be evaluated as follows: 

   i  .
2 2

jjA A i
j i i

z z d
z g b

+
= = +  (13) 

Obviously, on such basis of PDM it is necessary to decide on x, when 

 
1

( ) ,   1, ,

( ) ,   1, .

A
j j

A
i i

z x z j k

g x g i m

≥ =

≤ =
   (14) 

Now taking into account the requirements (12) or (13) of the membership function 
that in (11) are determined according to the relations 

 

i

1    for   ( ) ,

( )1 (1 ) for   ( ) ,
( )    

( ) for   ( ) ,

0 for   g (x)  

i j

Ai i
A i i iA

i
i

Ai i i
A i i i iA

i i i

i i

g x b

g x b b g x g
g

x
b d g x g b x b d
b d g

b d

λ
µ

λ

≤


− − ⋅ − ≤ ≤
= 

+ − ⋅ < ≤ +
 + −


+ <

  (15) 
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And, respectively,   

 

( )
for  ( ) ,

( )
( )

(1 ) for  ( ) .

j j A
A j jjA

j j
z j A

j j A
A A j j jA

j j

z x z
z z x z

z z
x

z x z
z z x z

z z

λ

µ

λ λ

−
⋅ ≤ ≤

−
= 

− + ⋅ − < ≤ −

   (16) 

 
The formulas (15)–(16) define the equations of straight lines that pass through 

( ,0),  ( , ),  ( ,1)A
j A jjz z zλ points is 1,   j k= and 1( ,1),  (( , ),  ( ,0)A

i A i ib g b dλ +  is 11,i m=   
and form broken lines. 

If in this case we obtain the concave membership functions, i.e. 

 (1 )A
j A j A jz z zλ λ> + −  (17) 

and 
 (1 ) ,A

i A i A ig b dλ λ> + −  (18) 

then these functions by dividing the intervals [ , ]jjz z  and, accordingly, [ , ]i i ib b d+  

need to be reduced to [ , ]i i ib b d ′+  where i id d ′> , so that in shorter intervals they be-
come convex. In this case, the reduction of the interval is not sought after a compro-
mise, because only such solutions as is Aλ λ≥  are taken into account. When Aλ λ<  as 
the value of target functions as those of restrictions are getting worse. After changes, 
unlike (15)–(16), we will get simpler relations 

 

1 for  ( ) ,

( )( ) 1 (1 ) for  ( ) ,
1

0 for  ( ),
1

i i
A

i i s A s
i A i iA

Ai i
A
i A i

i
A

g x b

g x b g bx b g x
g b

g b g x

λµ λ
λ

λ
λ




≤
 − −= − ⋅ − < ≤ −−
 − <
 −

 (19) 

and also 

              

A
j

jj
z

0 for  z (x) ,   
1

( ) .
( )

1 (1 ) for  ( )
1

A j

A
z Ai

j j j A j
A j jA

Aj

z
z

x
z z x z z

z x z
z z

λ
λ

µ
λ

λ
λ

 −
≤ ≤

−
= 

− − − ⋅ − < ≤ −−

  (20) 
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If now, in coordinated intervals, all membership functions are convex and piece-
wise continuous, then the optimization model (11) is equivalent to the LP model in 
which membership functions ziµ and iµ are written through (15)–(16) or (19)–(20). 

In [5] we also mention the iterative MOLPAL algorithm. MOLPAL is a shortened 
sentence entry: Multi Objective Linear Programming based on Aspiration Levels. 

Let’s note that in the model (11), the entire utility value is determined through the 
parameter 
 11 1( ) min( ( ), ..., ( ), ( ), ..., ( )).z z mkx x x x xλ µ µ µ µ=  

Let’s determine 
 max ( ),

x Xu
xλ

∈
 

i.e., the approach described here ensures that the guaranteed result is implemented. This 
principle ensures the choice of a guaranteed strategy, since it offers a judicious decision 
in the absence of information about the laws that govern the object being investigated 
and the logic of behavior of external entities. The application of these calculations pro-
vides caution in case of incomplete information. PDM can ignore the strategy outlined 
above when making a decision, i.e., to take risks. The method does not answer the ques-
tion of how certain risky decisions will affect the outcome. It provides PDM with in-
formation about possible outcomes of well-considered actions. And only the one who is 
fully responsible takes the final decision. 

3. CALCULATING ASPECTS OF THE PROBLEM 

Let's return to the problem (1), transforming it firstly to the form (8), namely, we 
consider the fuzzy linear programming model with flexible limiting constraints 

 
max

( ) max
Px
P QA x
→
− →

      (21) 

under conditions 1( ) , ,   1, ,i i i i ig x a x b b d i m≡ ⋅ ≤ + =  

 1( ) ,    1, ,   0.i i ig x a x b i m m x≡ ⋅ ≤ = + ≥  

Let’s specify (21): 

 1 1 2

2 1 2

17 12 max,
2 5 max,

z x x
z x x
= + →
= + →

 (22)                   

 1 1 2( ) 2 17,  20,g x x x≡ + ≤  
 2 1 2( ) 3 35;  39,g x x x≡ + ≤  
 3 1 2 15g x x= + ≤  
 1 2, 0.x x ≥  

We will stick here to the scheme proposed in the first paragraph. Then, according to (9),  

 1 2240,   55.z z= =  
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The lower limits of the target functions are chosen according to (10) 

 1 1 1min( , ),s uz z z=   2 2 2min( , ),s uz z z=  
where 
 **

1 (12, 3),x =     **
2 (10, 5),x =  

 **
1 21 min ( ) 17*10 12*5 170 60 230uz z x= = + = + =  

and 
 *

2 12 min ( 3*12 5*3) 36 15 51,uz z x= = + = + =  

but 
 *

1 21 ( ),sz z x=   *
2 12 ( ).sz z x=  

To locate *
1x and 

*
2x  the following LP problems should be solved: 

 1 1 217 12 maxz x x= + →           1 1 23 5 maxz x x= + →  

 under conditions                  under conditions 

 1 22 17x x+ ≤                       1 22 17x x+ ≤  
 1 23 35x x+ ≤                       1 23 35x x+ ≤  
 1 2 15x x+ ≤                        1 2 15x x+ ≤  
 1 2, 0x x ≥                            1 2, 0x x ≥ . 

For these systems * *
1 2 (10, 6;3, 2),x x= =   

 1 17*10, 6 12*3, 2 218, 6sz = + =      2 3*10, 6 5*3, 2 47,8.sz = + =  

So, 
 1 2min(218, 6; 239) 218, 6         min(47,8;51) 47,8,z z= = = =  

which means that 
 1 2[219; 240],     [48, 55].z z∈ ∈  

Here the integer solution is taken into account. 
Since a piecewise-linear convex function is formed out of the point pairs (219; 0), 

(230; 0,5), (240; 1) in the interval [219, 240], then after reducing the values of the target 
to [220, 240] – out of the expression 

1 2

1 2 1 21
1 2

0 for    17 12 220
( , ) 17 12 220 for    220 17 12 240

20

+ <
= + −

≤ + ≤
z

x x
x x x x x x

µ  

we will get a convex membership function. 
 

Similarly 
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1 2

1 2 1 22
1 2

0 for   3 5 49
( , ) 3 5 49 for   49 3 5x 55  

6

+ <
= + −

≤ + ≤
z

x x
x x x x x

µ  

is a convex membership function of the second goal 2 1 2( , ).z x x  
In addition, 

1 2

1 2 1 2
1 1

1 2 1 2

1 2 1 2

1,                                   when  2x 17 
1 10(27 2 ),      when   17 2 18

( ) ( )
3 20(24 2 ),     when  18 2 19
3 4(20 2 ),       when  19 2 20

+ ≤
 − − ≤ + ≤= =  − − ≤ + ≤
 − − < + ≤

g

x
x x x x

x x
x x x x

x x x x

µ µ   

and 
1 2

1 2 1 2

2 1 2 1 22

1 2 1 2

1 2

1,                                  when  3 35
1 10(45 3 ),      when  35 3 36

( ) ( ) 3 20(42 3 ),     when  36 3 37
1 4(40 3 ),        when  37 3 38
1 2(39 3 ),        wh

+ ≤
− − < + ≤

= = − − ≤ + ≤
− − ≤ + ≤
− −

g

x x
x x x x

x x x x x x
x x x x
x x

µ µ

1 2en  38 3 39








< + ≤ x x

  

On these bases, according to (11), the fuzzy model (22) is defuzzified into the linear 
programming model 
  maxλ →    (23) 
under conditions 

1 220 17 12 220,x xλ − − ≤ −  

1 26 3 5 49,x xλ − − ≤ −  

1 210 2 27,x xλ + + ≤  

1 1(20 3) 2 24 ,x xλ⋅ + + ≤  

1 2(4 3) 2 20,x xλ⋅ + + ≤  

1 210 3 45,x xλ + + ≤  

1 2(20 3) 3 42,x xλ⋅ + + ≤  

1 24 3 40,x xλ + + ≤  

1 22 3 30,x xλ + + ≤  

1 2 15,x x+ ≤  

1 2, , 0.x xλ ≥  

The integer solution of this system is as follows: 1 211,  4.x x= = It is a compro-
mise solution of the optimization model (2)–(4). The compromise is determined by the 
subjective probability. Here 0, 67.λ =  Under such conditions 

1

2

(11,4) 17 11 12 4 235
(11,4) 3 11 5 4 53.

= ⋅ + ⋅ =
= ⋅ + ⋅ =

z
z

 

This result is the solution to the problem set in (2)–(4). 
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It should be noted that fuzzy restrictions can be given not in the form of intervals 
[ , ]i i ib b d+ with a fixed lower limit, but may be based on knowledge of experts using 
fuzzy numbers. Also, there are problems with an unclearly formulated goal function and 
vague parameters. In such cases, the application of the theory of fuzzy sets and fuzzy 
logical derivations [3]–[8], as well as fuzzy statistics [7] is considered. 
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PRZYKŁADY OPTYMALIZACJI DLA PROBLEMÓW 
WIELOKRYTERIOWYCH 

Streszczenie 
 

W artykule przedstawiono elastyczne planowanie i kompromisowe rozwiązywa-
nie problemów optymalizacji dla wielu kryteriów. Rozważana jest metoda znale-
zienia kompromisu rozwiązującego problem optymalizacji wielu kryteriów z ela-
stycznym ograniczeniem. Podano przykład zastosowania tego podejścia pod 
warunkiem jednoczesnej optymalizacji zysku i dochodu firmy. 
 
Słowa kluczowe: elastyczne ograniczenie, elastyczne planowanie, optymalizacja wielu 

kryteriów, matryca technologiczna, rozwiązywanie kompromisów  


