PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antybiotyki peptydowe i ich kompleksy z jonami metali

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Peptide antibiotics and their complexes with metal ions
Języki publikacji
PL
Abstrakty
EN
Metal ions are essential for numerous antibiotics. They play a crucial role in the mechanism of action and may be involved in specific interactions with cell membrane or target molecules, such as: proteins and nucleic acids. Due to the fact that complexes usually poses a higher positive charge than free ligands, they might interact more tightly with DNA and RNA molecules. However, complexes may also form during antimicrobial agents application, because a lot of them possess functional groups which can bind metal ions present in physiological fluids. Many recent studies support a hypothesis that drugs may alter the serum metal ions concentration. Moreover, it has been shown that numerous complexes with antibiotics can cause DNA degradation, e.g. bleomycin which form stable complexes with redox metal ions and split the nucleic acids chain via the free radicals mechanism. Therefore, it is widely used in cancer therapy.
Rocznik
Strony
497--522
Opis fizyczny
Bibliogr. 117 poz., rys., schem., tab.
Twórcy
  • Wydział Chemii Uniwersytetu Wrocławskiego, ul. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
  • [1] R.A. Ataee, M.H. Ataee, A.M. Tavana, M. Salesi, Int. J. Prev. Med., 2017, 8, 16.
  • [2] R. Gaynes, Emerg. Infect. Dis., 2017, 23, 849.
  • [3] C.N. Kyriacos, R. Stephan, J. Antibiot., 2018, 71,153.
  • [4] C. Walsh, Nat. Rev. Microbiol., 2003, 1, 65.
  • [5] G.A. Pankey, L.D. Sabath, Clin. Infect. Dis., 2004, 38, 864.
  • [6] M. Chakroun, A. Chakroun, M. Hsairi, Int. Arab. J. Antimicrob. Agents, 2017, 7, 1.
  • [7] A. Zejc, M. Gorczyca, Chemia lekow, Wyd. 3, Wydawnictwo Lekarskie PZWL, Warszawa 2009.
  • [8] C. Walsh, Nature, 2000, 406, 775.
  • [9] A.L. Demain, S. Sanchez, J. Antibiot., 2009, 62, 5.
  • [10] J.A. Bosso, Pharmacotherapy, 2005, 25, 55S.
  • [11] M.A. Fischbach, C.T. Walsh, Chem. Rev., 2006, 106, 3468.
  • [12] Y. Li, Q. Xiang, Q. Zhang , Y. Huang, Z. Su, Peptides, 2012, 37, 207.
  • [13] R.D. Sussmuth, W. Wohlleben, Appl Microbiol. Biot., 2004, 63, 344.
  • [14] R.E.W. Hancock, D.S. Chapple, Antimicrob. Agents Ch., 1999, 43, 1317.
  • [15] M.A. Marahiel, J. Pept. Sci., 2009, 15, 799.
  • [16] V. Teixeira, M.J. Feio, M. Bastos, Prog. Lipid Res., 2012, 51, 149.
  • [17] T. Mascher, N.G. Margulis, T. Wang, R.W. Ye, J.D. Helmann, Mol. Microbiol., 2003, 50, 1591.
  • [18] R.N. Jones, D.J. Biedenbach, D.M. Johnson, M.A. Pfaller, J. Chemotherapy, 2001, 13, 244.
  • [19] K.A. Sannes-Lowery, R.H. Griffey, S.A. Hofstadler, Anal. Biochem., 2000, 280, 264.
  • [20] G. Thomas, Medicinal Chemistry an Introduction, Wyd. 2, John Wiley & Sons, Ltd, Chichester 2009.
  • [21] S.K. Straus, R.E.W. Hancock, Biochim. Biophys. Acta, 2006, 1758, 1215.
  • [22] S. Rasimus, R. Mikkola, M.A. Andersson, V.V. Teplova, N. Venediktova, C. Ek-Kommonen, M. Salkinoja-Salonen, Appl. Environ. Microbiol., 2012, 78, 3732.
  • [23] S. Ehala, V. Kasicka, E. Makrlik, Electrophoresis, 2008, 29, 652.
  • [24] D.A. Kelkar, A. Chattopadhyay, BBA-Biomembranes, 2007, 1768, 2011.
  • [25] T. Monshupanee, S.K. Johansen, A.E. Dahlberg, S. Douthwaite, Mol. Microbiol., 2012, 85, 1194.
  • [26] R.E. Stanley, G. Blaha, R.L. Grodzicki, M.D. Strickler, T.A. Steitz, Nat. Struct. Mol. Biol., 2010, 17, 289.
  • [27] R. Akbergenov, D. Shcherbakov, T. Matt, S. Duscha, M. Meyer, D.N. Wilson, E.C. Bottger, Antimicrob Agents Ch., 2011, 55, 4712.
  • [28] C.E. Maus, B.B. Plikaytis, T.M. Shinnick, Antimicrob. Agents Ch., 2005, 49, 3192.
  • [29] A.P. Carter, W.M. Clemons, D.E. Brodersen, R.J. Morgan-Warren, B.T. Wimberly, V. Ramakrishnan, Nature, 2000, 407, 340.
  • [30] Q. Vicens, E. Westhof, Chem. Biol., 2002, 9, 747.
  • [31] S.K. Johansen, C.E. Maus, B.B. Plikaytis, S. Douthwaite, Mol. Cell, 2006, 23, 173.
  • [32] J. Poehlsgaard, S. Douthwaite, Nat. Rev. Microbiol., 2005, 3, 870.
  • [33] S. Rauf, J.J. Gooding, K. Akhtar, M.A. Ghauri, M. Rahman, M.A. Anwar, A.M. Khalid, J. Pharmaceut. Biomed., 2005, 37, 205.
  • [34] C. Bendic, M. Enache, E. Volanschi, J. Mol. Graph. Model., 2005, 24, 10.
  • [35] X. Zhou, Z. Shen, D. Li, X. He, B. Lin, Talanta, 2007, 72, 561.
  • [36] W. Du, L. Wang, J. Li, B. Wang, Z. Li, W. Fang, Thermochim. Acta, 2007, 452, 31.
  • [37] P. Colson, C. Bailly, C. Houssier, Biophys. Chem., 1996, 58, 125.
  • [38] K.D. Goodwin, E.C. Long, M.M. Georgiadis, Nucleic Acids Res., 2005, 33, 4106.
  • [39] G.L. Olsen, E.A. Louie, G.P. Drobny, S.T. Sigurdsson, Nucleic Acids Res., 2003, 31, 5084.
  • [40] J. Lah, Biochemistry, 2000, 39, 9317.
  • [41] S.K. Sharma, M.Tandon, J.W. Lown, J. Org. Chem., 2000, 65, 1102.
  • [42] N.V Hud, M. Polak, Curr. Opin. Struc. Biol., 2001, 11, 293.
  • [43] S.T. Hoehn, H.-D. Junker, R.C. Bunt, C.J. Turner, J. Stubbe, Biochemistry, 2001, 40, 5894.
  • [44] J. Stubbe, J.W. Kozarich, W. Wu, D.E. Vanderwall, Accounts Chem. Res., 1996, 29, 322.
  • [45] K.D. Goodwin, M.A. Lewis, E.C. Long, M.M. Georgiadis, P. Natl. Acad. Sci. USA, 2008, 105, 5052.
  • [46] C. Bailly, A. Kenani, M.J. Waring, Nucleic Acids Res., 1997, 25, 1516.
  • [47] S.M. Monro, K.M. Cottreau, C. Spencer, J.R. Wentzell, C.L. Graham, C.N. Borissow, D.L. Jakeman, S.A. McFarland, Bioorgan. Med. Chem., 2011, 19, 3357.
  • [48] B.O. Okandeji, D.M. Greenwald, J. Wroten, J.K. Sello, Bioorgan. Med. Chem., 2011, 19, 7679.
  • [49] D. Talancon, C. Lopez, M. Font-Bardia, T. Calvet, J. Quirante, C. Calvis, R. Messeguer, R. Cortes, M. Cascante, L. Baldoma, J. Badia, J. Inorg. Biochem., 2013, 118, 1.
  • [50] W.K. Purves, S. David, G.H. Orians, H.C. Heller, Life: The Science of Biology, Wyd. 6, Sinauer Associates, Inc., Gordonsville, Wirginia 2001.
  • [51] P.P. Silva, W. Guerra, J.N. Silveira, A.M.D.C.Ferreira, T. Bortolotto, F.L. Fischer, H. Terenzi, A. Neves, E.C. Pereira-Maia, Inorg. Chem., 2011, 50, 6414.
  • [52] S. Wang, T. Peng, F.C. Yang, J. Electroanal. Chem., 2003, 544, 87.
  • [53] M. Kozurkova, D. Sabolova, L. Janovec, J. Mikes, J. Koval, J. Ungvarsky, M. Stefanisinova, P. Fedorocko, P. Kristian, J. Imrich, Bioorgan. Med. Chem., 2008, 16, 3976.
  • [54] J. Plsikova, L. Janovec, J. Koval, J. Ungvarsky, J. Mikes, R. Jendzelovsky, P. Fedorocko, J. Imrich, P. Kristian, J. Kasparkova, V. Brabec, M. Kozurkova, Eur. J. Med. Chem., 2012, 57, 283.
  • [55] G. Zhang, X. Hu, N. Zhao, W. Li, L. He, Pestic. Biochem. Phys., 2010, 98, 206.
  • [56] B.K. Sahoo, K.S. Ghosh, R. Bera, S. Dasgupta, Chem. Phys., 2008, 351, 163.
  • [57] Y. Lu, J. Lv, G. Zhang, G. Wang, Q. Liu, Spectrochim. Acta A, 2010, 75, 1511.
  • [58] S. Roy, R. Banerjee, M. Sarkar, J. Inorg. Biochem., 2006, 100, 1320.
  • [59] L.-J. Ming, J.D. Epperson, J. Inorg. Biochem., 2002, 91, 46.
  • [60] A.D. McNaught, A. Wilkinson, IUPAC. Compendium of Chemical Terminology, Drugie wydanie (“Gold Book”), Blackwell Scientific Publications, Oxford 1997.
  • [61] D.M. Citron, C.V. Merriam, K.L. Tyrrell, Y.A. Warren, H. Fernandez, E.J.C. Goldstein, Antimicrob. Agents Ch., 2003, 47, 2334.
  • [62] L.-J. Ming, J.D. Epperson, J. Inorg. Biochem., 2002, 91, 46.
  • [63] A.M. Hempel, S. Cantlay, V. Molle, S.-B. Wang, M.J. Naldrett, J.L. Parker, D.M. Richards, Y.-G. Jung, M.J. Buttner,K. Flardh, P. Natl. Acad. Sci. USA, 2012, 109, E2371.
  • [64] L.C. Craig, W.F. Phillips, M. Burachik, Biochemistry, 1969, 8, 2348.
  • [65] N.W. Cornell, D.G. Guiney Jr., Biochem. Biophys. Res. Co., 1970, 40, 530.
  • [66] R.E. Wasylishen, M.R. Graham, Can. J. Biochem., 1975, 53, 1250.
  • [67] E.G. Seebauer, E.P. Duliba, D.A. Scogin, R.B. Gennis, R.L.Belford, J. Am. Chem. Soc., 1983, 105, 4926.
  • [68] J. Peisach, W.E. Blumberg, Arch. Biochem. Bioph., 1974, 165, 691.
  • [69] F. Drablos, D.G. Nicholson, M. Ronning, Biochim. Biophys. Acta, 1999, 1431, 433.
  • [70] F. Drablos, J. Comput. Chem., 2000, 21, 1.
  • [71] J. Gu, R. Codd, RSC Adv., 2015, 5, 3443.
  • [72] J.D. Bloss, J.A. Blessing, B.C. Behrens, R.S. Mannel, J.S. Rader, A.K. Sood, M. Markman, J. Benda, J. Clin. Oncol., 2002, 20, 1832.
  • [73] C. Xia, F.H. Forsteling, D.H. Petering, Biochemistry, 2003, 42, 6559.
  • [74] L. Ronconi, P.J. Sadler, Coord. Chem. Rev., 2007, 251, 1633.
  • [75] M. Sugiyama, T. Kumagai, J. Biosci. Bioeng., 2002, 93, 105.
  • [76] R.C. Brooks, P. Carnochan, J.F. Vollano, N.A. Powell, J. Zweit, J.K. Sosabowski, S. Martellucci, M.C. Darkes, S.P. Fricker, B.A. Murrer, Nucl. Med. Biol., 1999, 26, 421.
  • [77] M. Sugiyama, T. Kumagai, M. Hayashida, M. Maruyama, Y. Matoba, J. Biol. Chem., 2002, 277, 2311.
  • [78] K.E. Loeb, J.M. Zaleski, C.D. Hess, S.M. Hecht, E.I. Solomon, J. Am. Chem. Soc., 1998, 120, 1249.
  • [79] C. Xia, F.H. Forsterling, D.H. Petering, Biochemistry, 2003, 42, 6559.
  • [80] C. Lee, H. Won, J. Kor. Mag. Reson. Soc., 2007, 11, 129.
  • [81] E.C. Wasinger, L. Zaleski, B. Hedman, K.O. Hodgson, E.I. Solomon; J. Biol. Inorg. Chem., 2002, 7, 157.
  • [82] W. Wu, D.E. Vanderwall, C.J. Turner, S. Hoehn, J. Chen, J. W. Kozarich, J. Stubbe; Nucleic Acids Res., 2002, 30, 4881.
  • [83] A. Raja, J. LaBonte, J. Lebbos, P. Kirkpatrick, Nat. Rev. Drug Disccov., 2003, 2, 943.
  • [84] F.P. Tally, M. Zeckel, M.M. Wasilewski, C. Carini, C.L Berman, G.L. Drusano, F.B.J. Olseon, Expert Opin. Inv. Drug., 1999, 8, 1222.
  • [85] D. Jung, A. Rozek, M. Okon, R.E.W. Hancock, Chem. Biol., 2004, 11, 949.
  • [86] M.J. Rybak, E. Hershberger, T. Moldovan, R.G. Grucz, Antimicrob. Agents Ch., 2000, 44, 1062.
  • [87] A.L. Barry, P.C. Fuchs, Antimicrob. Agents Ch., 2001, 45, 1919.
  • [88] J.A. Silverman, N. Oliver, T. Andrew, T. Li, Antimicrob. Agents Ch., 2001, 45, 1799.
  • [89] P.J. Petersen, P.A. Bradford, W.J. Weiss, T.M. Murphy, P.E. Sum, S.J. Projan, Antimicrob. Agents Ch., 2002, 46, 2595.
  • [90] J.A. Silverman, N.G. Perlmutter, H.M. Shapiro, Antimicrob. Agents Ch., 2003, 47, 2538.
  • [91] D. Jung, A. Rozek, M. Okon, R.E.W. Hancock, Chem. Biol., 2004, 11, 949.
  • [92] Z. Hojati, C. Milne, B. Harvey, L. Gordon, M. Borg, F. Flett, B. Wilkinson, P.J. Sidebottom, B.A. Rudd, M.A. Hayes, C.P. Smith, J. Micklefield, Chem. Biol., 2002, 9, 1175.
  • [93] E. Vass, F. Besson, Z. Majer, L. Volpon, M. Hollosi, Biochem. Biophys. Res. Co., 2001, 282, 361.
  • [94] M. Rautenbach, P. Swarta, M. J. van der Merweb, Bioorg. Med. Chem., 2000, 8, 2539.
  • [95] C.-H. Jiang, Y. Chen, F. Yan, Z.-H. Fan, J.-H. Guo, Genome Announc., 2017, 5, e00886.
  • [96] J.M. David, A.K. Rajasekaran, J. Kidney Cancer VHL., 2015, 2, 15.
  • [97] B.A. Wallace, Annu. Rev. Biophys. Bio., 1990, 19, 127.
  • [98] Y. Chen, B.A. Wallace, Biophys. J., 1996, 71, 163.
  • [99] M.D. Ronghe, D. Murphy D., Chemotherapy and Novel Cancer Targeted Therapies [w:] The Surgery of Childhood Tumors, Carachi R., Grosfeld J. (Red.), Springer, Berlin, Heidelberg 2016.
  • [100] L. Karawajew, E. N. Glibin, V.Y. Maleev, G. Czerwony, B. Dorken, D.B. Davies, A.N. Veselkov, Anti-cancer Drug Des., 2000, 15, 331.
  • [101] M.M. Fishman, L.J. Rosenwasser, Biochim. Biophys. Acta, 1968, 166, 584.
  • [102] S. Wang, T.-Z. Peng, C.F. Yang, J. Electroanal. Chem., 2003, 544, 87.
  • [103] W. Szczepanik, P. Kaczmarek, M. Jeżowska-Bojczuk, J. Inorg. Biochem., 2004, 98, 2141.
  • [104] B. Ivanova, M. Spiteller, Polyhedron, 2012, 38, 235.
  • [105] M. Świątek, D. Valensin, C. Migliorini, E. Gaggelli, G. Valensin, M. Jeżowska-Bojczuk, Dalton Trans., 2005, 23, 3808.
  • [106] M. Brzezowska, M. Kucharczyk-Klamińska, F. Bernardi, D. Valensin, N. Gaggelli, E. Gaggelli, G. Valensin, M. Jeżowska-Bojczuk, J. Inorg. Biochem., 2010, 104, 193.
  • [107] M. Jeżowska-Bojczuk, K. Stokowa-Sołtys, Eur. J. Med. Chem., 2018, 143, 997
  • [108] F. Gasparrini, I. D’Acquarica, J.G. Vos, C.M. O’Connor, C. Villani, Tetrahedron: Asymmetry, 2000, 11, 3535.
  • [109] M. Kucharczyk, M. Brzezowska, A. Maciąg, T. Lis, M. Jeżowska-Bojczuk, J. Inorg. Biochem., 2008, 102, 936.
  • [110] G. Mohan, S. Kulshershtha, P. Sharma, Biol. Trace Elem. Res., 2006, 111, 63.
  • [111] M. Abbasi Nazari, F. Kobarfard, P. Tabarsi, J. Salamzadeh, Biol. Trace Elem. Res., 2009, 128, 161.
  • [112] K. Stokowa, W. Szczepanik, N. Gaggelli, E. Gaggelli, G. Valensin, M. Jeżowska-Bojczuk, J. Inorg. Biochem., 2012, 106, 111.
  • [113] K. Stokowa-Sołtys, N. A. Barbosa, A. Kasprowicz, R. Wieczorek, N. Gaggelli, E. Gaggelli, G. Valensin, J. Wrzesiński, J. Ciesiołka, T. Kuliński, W. Szczepanik, M. Jeżowska-Bojczuk, Dalton Trans., 2016, 45, 8645.
  • [114] M. Szafraniec, K. Stokowa-Sołtys, J. Nagaj, A. Kasprowicz, J. Wrzesiński, M. Jeżowska-Bojczuk, J. Ciesiołka, Dalton Trans., 2012, 41, 9728.
  • [115] K. Stokowa-Sołtys, M. Jeżowska-Bojczuk, J. Inorg. Biochem., 2013, 127, 73.
  • [116] J. Nagaj, P. Kołkowska, A. Bykowska, U.K. Komarnicka, A. Kyzioł, M. Jeżowska-Bojczuk, Med. Chem. Res.,. 2015, 24, 115.
  • [117] K. Stokowa-Sołtys, A. Kasprowicz, J. Wrzesiński, J. Ciesiołka, N. Gaggelli, E. Gaggelli, G. Valensin, M. Jeżowska-Bojczuk, J. Inorg. Biochem., 2015, 151, 67.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9dc66be-f029-4686-b3bb-6ff6c6c9a894
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.