PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ warunków hodowli na usunięcie azowego błękitu Evansa przez szczep Escherichia coli

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The influence of growth conditions on removal of azo Evans blue by strain Escherichia
Języki publikacji
PL
Abstrakty
PL
W biologicznej dekoloryzacji barwników azowych szerokie zastosowanie znajdują bakterie należące do różnych grup taksonomicznych. Odpowiedni dobór szczepu oraz optymalizacja warunków jego wzrostu decydują o wynikach dekoloryzacji. Celem niniejszych badań było określenie wpływu stężenia barwnika, warunków zróżnicowanego natlenienia prób oraz typu zastosowanego nośnika biomasy na efektywność dekoloryzacji błękitu Evansa (EB). Testy stężeniowe wykazały, że zawartość 0,1 g/L jest zbyt wysoka dla badanego szczepu E. coli, zatem użyte w eksperymencie stężenie to 0.08g/L. Testy nośników naturalnych i syntetycznych wykazały, że jest to ważny etap badań, gdyż dobór nośnika nie może być przypadkowy. Spośród 14 testowanych nośników do badań wytypowano 2 (słomę pszeniczną i siatkę podtynkową). Rodzaj użytego nośnika bez żywej biomasy istotnie wpłynął na efekty usunięcia. Zdecydowanie lepsze właściwości sorpcyjne posiadała słoma, a różnice te były istotne statystycznie. Istotne statystycznie różnice stwierdzono również w przypadku użycia nośników z immobilizowaną na nich biomasą. Dużo lepsze wyniki uzyskano dla biomasy immobilizowanej na słomie. Warunki hodowli: statyczne, półstatyczne i dynamiczne nie miały istotnego wpływu na efekty usunięcia EB.
EN
Bacteria from different taxonomic groups are commonly used in processes of biological decolourization of azo dyes. The propper choice of the strain of bacteria and optimization of growth conditions impact on decolourization results. The aim of experiment was estimation of influence of dye concentration, a various level of sample aeration and type of solid supports used for biomass immobilization on efficacy of Evans blue (EB) decolourization. The results of dye concentration test showed that content of 0.1 g/L is too high for studied strain of E. coli. In the main experiment concentration 0.08 g/L was used. The tests of many solid supports indicate that the choise of them should not be a random. From the 14 tested solid supports for the main experiment only 2 were selected (wheat straw, flush grid). The type of used solid supports without living bacteria significantly influenced on the dye removal effects. Wheat straw had definitely better sorption properties than flush grid and differences were statistically important. Statistically important differences were also observed in case of usage the solid support with immobilized bacteria biomass. Definitely better results were reached for bacteria immobilized on the wheat straw. The growth conditions: static, semistatic, dynamic had no crucial influence on efficacy of Evans blue removal.
Rocznik
Strony
143--154
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Biotechnologii Środowiskowej, ul. Akademicka 2A, 44-100 Gliwice, tel.: +48 32 2372855
autor
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Biotechnologii Środowiskowej, ul. Akademicka 2A, 44-100 Gliwice, tel.: +48 32 2372855
Bibliografia
  • 1. An S. Y., Min S. K., Cha I. H., Choi Y. L., Cho Y. S., Kim C.H., & Lee Y. C. (2002). Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnology Letters, 24:1037–1040.
  • 2. Chang J. S., Chen B. Y., Lin S. Y. (2004). Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresource Technol. 91:243-248.
  • 3. Cui D., Li G., Zhao D., Gu X., Wang C., Zhao M. (2012). Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions. Journal of Hazardous Materials, 221–222:185–192. doi:10.1016/j.jhazmat.2012.04.03.
  • 4. Franciscon E., Zille A., Dias Guimaro F., Ragagnin deMenezes C., Durrant L. R., Cavaco-Paulo A. (2009). Biodegradation of textile azo dyes by facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. International Biodeterioration and Biodegradation, 63:280–288. doi:10.1016/j.ibiod.2008.10.003.
  • 5. Franciscon E., Zille A., Fantinatti-Garboggini F., Serrano Silva I., Cavaco-Paulo A., Durrant, L. R. (2009). Microaerophillic-aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochemistry, 44:446–452. doi:10.1016/j.procbio.2008.12.009.
  • 6. Hamid M., Rehman K. (2009). Potential applications of peroxidases. Food Chemistry, 115:1177–1186. doi:10.1016/j.foodchem.2009.02.035.
  • 7. Koyani R. D., Sanghvi G. V., Sharma R. K., & Rajput K. S.(2013). Contribution of lignin degrading enzymes in decolourisation and degradation of reactive textile dyes.International Biodeterioration and Biodegradation, 77:1–9.
  • 8. Padamavathy S., Sandhya S., Swaminathan K., Subrahmanyam Y. V., Kaul S. N. (2003). Comparison of decolorization of reactive azo dyes by microorganisms isolated from varioussource. Journal of Environmental Sciences, 15:628–632.
  • 9. Somasiri W., Ruan W., Xiufen L., Jian C. (2006). Decolourization of textile wastewater containing acid dyes in UASB reactor system under mixed anaerobic granular sludge. Electronic Journal of Environmental, Agricultural and Food Chemistry, 5(1):1224–1234.
  • 10. Swamy J., Ramsay J. A. (1999). The evaluation of white-rot fungi in the decoloration of textile dyes. Enzyme and Microbial Technology, 24:130–137. doi:10.1016/S0141-0229(98)00105-7.
  • 11. Tony B. D., Goyal D., Khanna S. (2009). Decolorization of textile azo dyes by aerobic bacterial consortium. International Biodeterioration and Biodegradation, 63:462–469. doi:10.1016/j.ibiod.2009.01.003.
  • 12. Younes S., Bouallagui Z., Sayadi S. (2012). Catalytic behavior and detoxifying ability of an atypical homotrimeric laccase from the thermophilic strain Scytalidium thermophilum on selected azo and triarylmethane dyes. Journal of Molecular Catalysis B: Enzymatic, 79:41–48.
  • 13. Forgacs, E., Cserhati T., Oros G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30:953–971. doi:10.1016/j.envint.2004.02.001.
  • 14. Pointing S. B., & Vrijmoed L. L. P. (2000). Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World Journal of Microbiology and Biotechnology, 16:317–318.
  • 15. Sani R. K., Banerjee U. C. (1999). Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme and Microbial Technology, 24:433–437.
  • 16. Wong P. K., Yuen P. Y. (1998). Decolourization and biodegradation of N, N’-dimethyl-p-phenylenediamine by Klebsiella pneumonia RS-13 and Acetobacter liquefaciens S-1. Journal of Applied Microbiology, 85:79–87.
  • 17. Eichlerova I., Homolka L., Nerud F. (2006). Synthetic dye decolorization capacity of white rot fungus Dichomitus squalens. Bioresource Technology, 97:2153–2159.
  • 18. Hu T. L. (2001). Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Science and Technology, 43:261–269.
  • 19. Srinivasan A., Viraraghavan T. (2010). Decolorization of dye wastewater by biosorbents: a review. Journal of Environmental Management, 91:915–1929. doi:10.1016/j.jenvman.2010.05.003.
  • 20. Zabłocka-Godlewska E., Przystaś W., Grabińska-Sota E. (2009). Decolourization of triphenylmethane dyes and ecotoxicity their end products. Environment Protection Engineering, 35(1):161–169.
  • 21. Zabłocka-Godlewska E., Przystaś W., Grabińska-Sota E.(2012). Decolourization of diazo Evans blue by two strains of Pseudomonas fluorescens isolated from different wastewater treatment plants. Water, Air, and Soil Pollution, 223:5259–5266. doi:10.1007/s11270-012-1276-4.
  • 22. Zabłocka-Godlewska E., Przystaś W., Grabińska-Sota E. (2014). Decolourisation of different dyes by two Pseudomonas strains under various growth conditions. Water, Air, and Soil Pollution, 225:1846. doi:10.1007/s11270-013-1846-0.
  • 23. Przystaś W.,Zabłocka-Godlewska E., Grabińska-Sota E. (2009). Screening of dyes decolorizing microorganisms strains. Polish Journal of Environmental Studies, 18(2B):69–73.
  • 24. Przystaś W., Zabłocka-Godlewska E., Grabińska-Sota E. (2012). Biological removal of azo and triphenylmethane dyes and toxicity of process by-products. Water, Air, and Soil Pollution, 223:1581–1592. doi:10.1007/s11270-011-0966-7.
  • 25. Przystaś W., Zabłocka-Godlewska E., Grabińska-Sota E. (2013). Effectiveness of dyes removal by mixed fungal cultures and toxicity of their metabolites. Water, Air, and Soil Pollution, 224:1534. doi:10.1007/s11270-013-1534-0.
  • 26. Azmi W., Kumar Sani R., Chand Banerjee U. (1998). Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 22:185–191.
  • 27. Banat I. M., Nigam P., Singh D., Marchant R. (1996). Microbial decolorization of textile-dye-containing effluents: a review. Bioresource Technology, 58:217–227.
  • 28. Saratale R. G., Saratale G. D., Chang J. S., Govindwar S. P. (2010). Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation, 21:999–1015. doi:10.1007/s10532-010-9360-1
  • 29. Stolz A. (2001). Basic and applied aspects in the microbial degradation of azo dyes. Applied Microbiology and Biotechnology, 56:69–80. doi:10.1007/s002530100686.
  • 30. Wu J., Jung B., Kim K., Lee Y., Sung N. (2009). Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes. Journal of Environmental Sciences, 21:960–964. doi:10.1007/s00253-012-4476-3.
  • 31. Wu Y., Xiao X., Xu C., Cao D., Du,D. (2012). Decolorization and detoxification of a sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions. AppliedMicrobiology and Biotechnology. doi:10.1007/s00253-012-4476-3
  • 32. Nigam P., McMullan G., Banat I. M., & Marchant R. (1996). Decolorization of effluent from the textile industry by a microbial consortium. Biotechnological Letters, 18(1):117–120.
  • 33. Sharma D. K., Saini H. S., Singh M., Chimni S. S., & Chandha B. S. (2004). Isolation and characterization of microorganisms capable of decolorizing various triphenylmethane dyes. Journal of Basic Microbiology, 44(1):59–65. doi:10.1002/jobm.200310334.
  • 34. Vijayaraghavan K., Yun Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances26:266-291
  • 35. Rodriguez-Couto S. (2009). Dye removal by immobilized fungi. Biotechnology Advances 27:227-235.
  • 36. Iqbal M., Saeed A. (2007). Biosorption of reactive dye by loofa sponge – immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochemistry 42:1160-1164.
  • 37. Salyers A.A., Whitt D.D. (2000). Microbiology: diversity, disease, and the environment. 1st edition. New, York: Wiley.
  • 38. Schlegel, H.G. (1993). General microbiology, 7th edition. Cambridge, UK: Cambridge University Press.
  • 39. Isik M., Sponza D. T. (2003). Effect of oxygen on decolourization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process Biochemistry, 38:1183–1192.
  • 40. Chen B. Y., Chen S. Y., Lin M. Y., Chang J. S. (2006). Exploring bioaugmentation trategies for azo-dye decolorization using mixed cosortium of Pseudomonas luteola and Escherichia coli. Process Biochemistry, 41:1574-1581.
  • 41. Ding H. T., Du Y. Q., Liu D. F., Li Z. L., Chen X. J., Zhao Y. H. (2011). Cloning and expression in E. Coli of an organic solvent-tolerant and alkali-resistant glucose 1-dehydrogenase from Lysinibacillus sphaericus G10. Bioresour Technol, 102:1528-1536.
  • 42. Janas R., Węglarz Z., Bączek K., Kosakowska O. (2012). The consequent influence of selected biopreparations used in spice crops on the content of biologically active compounds in the seeds. Journal of Research and Applications in Agricultural Engineering, 57(3):167-171.
  • 43. Klimek B. (red.) (2011). Analiza fitochemiczna roślinnych substancji leczniczych. Wyd. Uniwersytetu Medycznego w Łodzi.
  • 44. Solis M., Solis A., Peres H. I., Manjarrez N., Flores M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry. 47:1723-1748.
  • 45. Burger S., Stolz A. (2010). Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases. Appl Microbiolo Biotechnol, 87:2067-2076.
  • 46. Malik A. (2004). Metal bioremediation through growing cells. Environ Int, 30:261-278.
  • 47. Won S. W., Choi S. B., Yun Y. S. (2005). Interaction between protonated waste biomass of Corynebacterium glutamicum and anionic dye Reactive Red 4. Colloids Surf A Physicochem Eng Asp, 262:175-180.
  • 48. Yun Y. S., Park J. M., Volesky B. (2001). Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol, 35:4353-4358.
  • 49. Kopcewicz J., Lewak S. (2012). Fizjologia roślin. Wyd. 3 Wyd Nauk PWN Warszawa.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9dbe9f8-223d-436f-aaa5-a29ef3e8d82f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.