Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In response to the trend toward sustainable management of by-products from the pulp and paper industry as well as plant waste, practical and economical methods are being developed to use them in a way that does not pose a threat to the environment. The main aim of the research was to study the possibility of using lignin and plant biomass as biosorbents for the removal of zinc ions from aqueous solutions. The secondary aim was to build an optimal multilayer system made of biosorbents selected during the research in order to obtain the highest sorption efficiency and to determine the best conditions of the sorption process. The effectiveness of zinc ion sorption was assessed using an appropriate combination of sorbents such as lignin, oat bran, rice husk, chitosan, pectin, sodium alginate, pine bark, coconut fiber and activated carbon, selected on the basis of literature data and the preliminary results of tests carried out using FTIR and AAS. The main component of the sorption system was lignin separated from black liquor. Results indicate that the best Zn sorption system was based on coconut fiber, lignin, and pine bark, for which the maximum sorption efficiency was 95%. The research also showed that the increase in the process temperature, the mass of biosorbents used and the alkaline pH are the factors that increase the efficiency of the sorption. It can be concluded that lignin and plant biomass can be used as ecological sorbents of zinc ions from water solutions. They are safe for the environment, produced from renewable sources, and are by-products or waste materials, which is part of the sustainable development and circular economy currently promoted in the EU.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
11--25
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Łukasiewicz - Lodz Institute of Technology 19/27 M. Skłodowskiej-Curie Street, 90-570 Lodz, Poland
autor
- Łukasiewicz - Lodz Institute of Technology 19/27 M. Skłodowskiej-Curie Street, 90-570 Lodz, Poland
- Lodz University of Technology, Faculty of Chemistry 116 Żeromskiego Street, 90-924 Łódź, Poland
autor
- Łukasiewicz - Lodz Institute of Technology 19/27 M. Skłodowskiej-Curie Street, 90-570 Lodz, Poland
- Lodz University of Technology, Faculty of Material Technologies and Textile Design 116 Żeromskiego Street, 90-924 Łódź, Poland
autor
- Łukasiewicz - Lodz Institute of Technology 19/27 M. Skłodowskiej-Curie Street, 90-570 Lodz, Poland
Bibliografia
- 1. Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic Life and Human Health. IJERPH 2020, 17, 2204, doi:10.3390/ijerph17072204.
- 2. Rypińska, I.; Biegańska, M. Modification of Salix Americana Willow Bark for Removal of Heavy Metal Ions from Aqueous Solutions. Polish Journal of Chemical Technology 2014, 16, 41–44, doi:10.2478/pjct-2014-0067.
- 3. Dhakal, R.P.; Ghimire, K.N.; Inoue, K.; Yano, M.; Makino, K. Acidic Polysaccharide Gels for Selective Adsorption of Lead (II) Ion. Separation and Purification Technology 2005, 42, 219–225, doi:10.1016/j.seppur.2004.07.016.
- 4. Fertu, D.I.; Bulgariu, L.; Gavrilescu, M. Modeling and Optimization of Heavy Metals Biosorption by Low-Cost Sorbents Using Response Surface Methodology. Processes 2022, 10, 523, doi:10.3390/pr10030523.
- 5. Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent Advances in Applications of Low-Cost Adsorbents for the Removal of Heavy Metals from Water: A Critical Review. Separation and Purification Technology 2021, 278, 119510, doi:10.1016/j.seppur.2021.119510.
- 6. Gryko, K.; Kalinowska, M.; Świderski, G. The Use of Apple Pomace in Removing Heavy Metals from Water and Sewage. In Proceedings of the Innovations-Sustainability-Modernity-Openness Conference (ISMO’21); MDPI, November 2 2021; p. 24.
- 7. Bartczak, P.; Norman, M.; Klapiszewski, Ł.; Karwańska, N.; Kawalec, M.; Baczyńska, M.; Wysokowski, M.; Zdarta, J.; Ciesielczyk, F.; Jesionowski, T. Removal of Nickel(II) and Lead(II) Ions from Aqueous Solution Using Peat as a Low-Cost Adsorbent: A Kinetic and Equilibrium Study. Arabian Journal of Chemistry 2018, 11, 1209–1222, doi:10.1016/j.arabjc.2015.07.018.
- 8. Kuczajowska-Zadrożna, M.; Filipkowska, U.; Jóźwiak, T. Adsorption of Cu (II) and Cd (II) from Aqueous Solutions by Chitosan Immobilized in Alginate Beads. Journal of Environmental Chemical Engineering 2020, 8, 103878, doi:10.1016/j.jece.2020.103878.
- 9. Stanisz, M.; Klapiszewski, Ł.; Kołodyńska, D.; Jesionowski, T. Development of Functional Lignin-Based Spherical Particles for the Removal of Vanadium(V) from an Aqueous System. International Journal of Biological Macromolecules 2021, 186, 181–193, doi:10.1016/j.ijbiomac.2021.07.046.
- 10. Ge, Y.; Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustainable Chem. Eng. 2018, 6, 7181–7192, doi:10.1021/acssuschemeng.8b01345.
- 11. Szalaty, T.J.; Klapiszewski, Ł.; Jesionowski, T. Recent Developments in Modification of Lignin Using Ionic Liquids for the Fabrication of Advanced Materials–A Review. Journal of Molecular Liquids 2020, 301, 112417, doi:10.1016/j.molliq.2019.112417.
- 12. Jayakumar, V.; Govindaradjane, S.; Rajamohan, N.; Rajasimman, M. Biosorption Potential of Brown Algae, Sargassum Polycystum, for the Removal of Toxic Metals, Cadmium and Zinc. Environ Sci Pollut Res 2021, doi:10.1007/s11356-021-15185-7.
- 13. Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Eng. Life Sci. 2004, 4, 219–232, doi:10.1002/elsc.200420026.
- 14. Mattos Deus R., Panzarin Savietto J., Rosane Aparecida Gomes Battistelle R.; Ometto A.R Trends in Publications on the Circular Economy. Revista ESPACIOS 2017.
- 15. Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresource Technology 2008, 99, 3935–3948, doi:10.1016/j.biortech.2007.06.011.
- 16. Miros-Kudra P; Sobczak P; Kopania E Removal of Heavy Metals from Aqueous Solutions with the Use of Lignins and Biomass. Fibres & Textiles in Eastern Europe 2022, 151, 99–111, doi:https://doi.org/10.2478/ftee-2022-0013.
- 17. H. Kim, M. K. Hill, A. L. Friche Preparation of Kraft Lignin from Black Liquor. Tappi J 1987, 112.
- 18. Dutta, A. Fourier Transform Infrared Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier, 2017; pp. 73–93 ISBN 978-0-323-46140-5.
- 19. PN-92/ P-50092 Surowce Dla Przemysłu Papierniczego DREWNO- Analiza Chemiczna (in Polish). Wydawnictwo normalizacyjne „ALFA” 1992.
- 20. Alba, K.; MacNaughtan, W.; Laws, A.P.; Foster, T.J.; Campbell, G.M.; Kontogiorgos, V. Fractionation and Characterisation of Dietary Fibre from Blackcurrant Pomace. Food Hydrocolloids 2018, 81, 398–408, doi:10.1016/j.foodhyd.2018.03.023.
- 21. Li, T.; Takkellapati, S. The Current and Emerging Sources of Technical Lignins and Their Applications: Sources of Technical Lignins. Biofuels, Bioprod. Bioref. 2018, 12, 756–787, doi:10.1002/bbb.1913.
- 22. Adsorpcja miedzi(II) i cynku(II) na modyfikowanej korze wierzby Salix americana (in Polish). Proceedings of ECOpole 2013, doi:10.2429/proc.2013.7(2)092.
- 23. Wang, K.; Xu, F.; Sun, R. Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction. IJMS 2010, 11, 2988–3001, doi:10.3390/ijms11082988.
- 24. Faleva, A.V.; Belesov, A.V.; Kozhevnikov, A.Yu.; Falev, D.I.; Chukhchin, D.G.; Novozhilov, E.V. Analysis of the Functional Group Composition of the Spruce and Birch Phloem Lignin. International Journal of Biological Macromolecules 2021, 166, 913–922, doi:10.1016/j.ijbiomac.2020.10.248.
- 25. Anderson RJ, Bendell DJ Organic Spectroscopic Analysis. Royal Society of Chemistry; Groundwater PW, 2004;
- 26. Tsuboi, M. Infrared Spectrum and Crystal Structure of Cellulose. J. Polym. Sci. 1957, 25, 159–171, doi:10.1002/pol.1957.1202510904.
- 27. Wu, D.; Wang, Y.; Li, Y.; Wei, Q.; Hu, L.; Yan, T.; Feng, R.; Yan, L.; Du, B. Phosphorylated Chitosan/CoFe2O4 Composite for the Efficient Removal of Pb(II) and Cd(II) from Aqueous Solution: Adsorption Performance and Mechanism Studies. Journal of Molecular Liquids 2019, 277, 181–188, doi:10.1016/j.molliq.2018.12.098.
- 28. Silva, S.M.L. Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites; 2012; ISBN 978-953-51-0537-4.
- 29. Voo, W.-P.; Lee, B.-B.; Idris, A.; Islam, A.; Tey, B.-T.; Chan, E.-S. Production of Ultra-High Concentration Calcium Alginate Beads with Prolonged Dissolution Profile. RSC Adv. 2015, 5, 36687–36695, doi:10.1039/C5RA03862F.
- 30. Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR Spectra and PCA to the Bulk Characterization of Cell Wall Residues of Fruits and Vegetables Along a Fraction Process. Food Biophysics 2013, 8, 29–42, doi:10.1007/s11483-012-9279-7.
- 31. Synytsya, A. Fourier Transform Raman and Infrared Spectroscopy of Pectins. Carbohydrate Polymers 2003, 54, 97–106, doi:10.1016/S0144-8617(03)00158-9.
- 32. Sene, Cfb.; McCann, M.C.; Wilson, R.H.; Grinter, R. Fourier-Transform Raman and Fourier-Transform Infrared Spectroscopy (An Investigation of Five Higher Plant Cell Walls and Their Components). Plant Physiol. 1994, 106, 1623–1631, doi:10.1104/pp.106.4.1623.
- 33. Largo-Gosens, A.; Hernández-Altamirano, M.; GarcÃa-Calvo, L.; Alonso-SimÃ3n, A.; à lvarez, J.; Acebes, J.L. Fourier Transform Mid Infrared Spectroscopy Applications for Monitoring the Structural Plasticity of Plant Cell Walls. Front. Plant Sci. 2014, 5, doi:10.3389/fpls.2014.00303.
- 34. Silverstein, R.M.; Bassler, G.C. Spectrometric Identification of Organic Compounds. J. Chem. Educ. 1962, 39, 546, doi:10.1021/ed039p546.
- 35. Kołodziejczak-Radzimska, A.; Markiewicz, E.; Jesionowski, T. Structural Characterisation of ZnO Particles Obtained by the Emulsion Precipitation Method. Journal of Nanomaterials 2012, 2012, 1–9, doi:10.1155/2012/656353.
- 36. Kozioł, A.; Środa-Pomianek, K.; Górniak, A.; Wikiera, A.; Cyprych, K.; Malik, M. Structural Determination of Pectins by Spectroscopy Methods. Coatings 2022, 12, 546, doi:10.3390/coatings12040546.
- 37. Valentín, L.; Kluczek-Turpeinen, B.; Willför, S.; Hemming, J.; Hatakka, A.; Steffen, K.; Tuomela, M. Scots Pine (Pinus Sylvestris) Bark Composition and Degradation by Fungi: Potential Substrate for Bioremediation. Bioresource Technology 2010, 101, 2203–2209, doi:10.1016/j.biortech.2009.11.052.
- 38. Borkowski, D.; Krucińska, I.; Draczyński, Z. Preparation of Nanocomposite Alginate Fibers Modified with Titanium Dioxide and Zinc Oxide. Polymers 2020, 12, 1040, doi:10.3390/polym12051040.
- 39. Saygideger, S.; Gulnaz, O.; Istifli, E.S.; Yucel, N. Adsorption of Cd(II), Cu(II) and Ni(II) Ions by Lemna Minor L.: Effect of Physicochemical Environment. Journal of Hazardous Materials 2005, 126, 96–104, doi:10.1016/j.jhazmat.2005.06.012.
- 40. Wang, R.; Liang, R.; Dai, T.; Chen, J.; Shuai, X.; Liu, C. Pectin-Based Adsorbents for Heavy Metal Ions: A Review. Trends in Food Science & Technology 2019, 91, 319–329, doi:10.1016/j.tifs.2019.07.033.
- 41. Faure, A.M.; Koppenol, W.H.; Nyström, L. Iron(II) Binding by Cereal Beta-Glucan. Carbohydrate Polymers 2015, 115, 739–743, doi:10.1016/j.carbpol.2014.07.038.
- 42. Górecka, D.; Stachowiak, J. Sorption of Copper, Zinc and Cobalt by Oat and Oat Products. Nahrung 2002, 46, 96–99, doi:10.1002/1521-3803(20020301)46:2<96::AID-FOOD96>3.0.CO;2-1.
- 43. Lach, J.; Okoniewska, E.; Ociepa-Kubicka, A.; Szymonik, A. Adsorpcja Ołowiu Na Modyfikowanym Węglu Aktywnym ROW 08 Supra (in Polish). Annual Set The Environment Protection Rocznik Ochrona Środowiska 2015, 17, 692–709.
- 44. Argun, M.E.; Güclü, D.; Karatas, M. Adsorption of Reactive Blue 114 Dye by Using a New Adsorbent: Pomelo Peel. Journal of Industrial and Engineering Chemistry 2014, 20, 1079–1084, doi:10.1016/j.jiec.2013.06.045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9daa1f9-974e-4bb3-94b6-9044f191422d