PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reducing flood hazard by effective polder operation: A case study of the Golina polder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine an effective variant of operation of the Golina polder to reduce flood hazard in the Warta River valley. We implemented a trial-and-error method for the development of computational variants. Our approach was based on staged analyses of alternatives, which took into account different locations and parameters of the inlet and outlet-controlling structures. Various control scenarios for flooding and draining the polder were also considered. A hybrid hydrodynamic model consisting of a 1D part for the main river area and a 2D part for the polder area was used for calculations. The model was built based on a digital elevation model (1 m resolution) and channel sections of the Warta River. The calibration was based on data collected during the flood in 2010 from the water gauge Sławsk (located directly at the Warta River) and water surface elevation measurements carried out in the polder area. Alternatives in subsequent stages were determined based on the results of previous stages, as well as experiences from the 2010 flood and consultations with the Regional Water Management Board in Poznań. The performance of the alternatives was evaluated according to six criteria that described the effectiveness of the polder operation in terms of its practical use and effectiveness in reducing flood hazard. The results showed that our approach made it possible to identify an effective variant of polder operation. Additional calculations were also performed to determine the magnitude of flows for which flooding of the polder should be considered to reduce downstream flooding.
Twórcy
  • Institute of Meteorology and Water Management - National Research Institute
  • Institute of Meteorology and Water Management - National Research Institute
  • Institute of Meteorology and Water Management - National Research Institute
  • Institute of Meteorology and Water Management - National Research Institute
  • Poznan University of Life Sciences, Department of Hydraulic and Sanitary Engineering
Bibliografia
  • Anderson K.E., Paul A.J., McCauley E., Jackson L.J., Post J.R., Nisbet R.M, 2006, Instream flow needs in streams and rivers: the importance of understanding ecological dynamics, Frontiers in Ecology and the Environment, 4 (6), 309-318, DOI: 10.1890/1540-9295(2006)4[309:IFNISA]2.0.CO.
  • 2. Bashiri-Atrabi H., Qaderi K., Rheinheimer D.E., Sharifi E., 2015, Application of harmony search algorithm to reservoir operation optimization, Water Resources Management, 29, 5729-5748, DOI: 10.1007/s11269-015-1143-3.
  • Bouwer L.M., Bubeck P., Wagtendonk A.J., Aerts J.C.J.H., 2009, Inundation scenarios for flood damage evaluation in polder areas, Natural Hazards and Earth System Sciences, 9 (6), 1995-2007, DOI: 10.5194/nhess-9-1995-2009.
  • Chatterjee C., Förster S., Bronstert A., 2008, Comparison of hydrodynamic models of different complexities to model floods with emergency storage areas, Hydrological Processes, 22 (24), 4695-4709, DOI: 10.1002/hyp.7079.
  • Chow V.T., 1959, Open-channel hydraulics, McGraw-Hill, New York, 680 pp.
  • Côté P., Leconte R., 2016, Comparison of stochastic optimization algorithms for hydropower reservoir operation with ensemble streamflow prediction, Journal of Water Resources Planning and Management, 142 (2), 04015046.
  • Di Baldassarre G., Castellarin A., Brath B., 2009, Analysis of the effects of levee heightening on flood propagation: example of the River Po, Italy, Hydrological Sciences Journal, 54 (6), 1007-1017, 10.1623/hysj.54.6.1007.
  • DHI 2011a, Reference Manual. A Modelling System for Rivers and Channels.
  • DHI, 2011b, User Manual. Mike Flood, 1D-2D Modeling.
  • Dobson B., Wagener T., Pianosi F., 2019, An argument-driven classification and comparison of reservoir operation optimization methods, Advances in Water Resources, 128, 74-86, DOI: 10.1016/j.advwatres.2019.04.012.
  • Fayaed S.S., El-Shafie A., Jaafar O., 2013, Reservoir-system simulation and optimization techniques, Stochastic Environmental Research and Risk Assessment, 27, 1751-1772, DOI: 10.1007/s00477-013-0711-4.
  • Gao Y., Yuan Y., Wang H., Zhang Z., Ye L., 2018, Analysis of impacts of polders on flood processes in Qinhuai River Basin, China, using the HEC-RAS model, Water Supply, 18 (5), 1852-1860, DOI: 10.2166/ws.2018.008.
  • Hartman T., Spit T., 2016, Legitimizing differentiated flood protection levels - Consequences of the European flood risk management plan, Environmental Science & Policy, 55, 361-367, DOI: 10.1016/j.envsci.2015.08.013.
  • Hesselink A.W., Stelling G.S., Kwadijk J.C., Middelkoop H., 2003, Inundation of a Dutch river polder, sensitivity analysis of a physically based inundation model using historic data, Water Resources Research, 39 (9), DOI: 10.1029/2002WR001334.
  • Huang S., Rauberg J., Apel H., Disse M., Lindenschmidt K.-E., 2007, The effectiveness of polder systems on peak discharge capping of floods along the middle reaches of the Elbe River in Germany, Hydrology and Earth System Sciences, 11, 1391-1401, DOI: 10.5194/hess-11-1391-2007.
  • Ilnicki P., Orłowski W., Machczyński J., Winiecki A., 1987, Koncepcja melioracji i zagospodarowania polderu III-Rataje oraz polderu IV-Wrąbczyn w aspekcie studium przyrodniczego doliny środkowej Warty, WZIR Technical Report.
  • Kienzler S., Pech I., Kreibich H., Müller M., Thieken A.H., 2015, After the extreme flood in 2002: changes in preparedness, response and recovery of flood-affected residents in Germany between 2005 and 2011, Natural Hazards and Earth System Sciences, 15 (3), 505-526, DOI: 10.5194/nhess-15-505-2015.
  • Ko S.-K., Fontane D.G., Labadie J.W., 1992, Multiobjective optimization of reservoir systems operation, JAWRA Journal of the American Water Resources Association, 28 (1), 111-127, DOI: 10.1111/j.1752-1688.1992.tb03158.x.
  • Książek L., Wałęga A., Bartnik W., Krzanowski S., 2010, Kalibracja i weryfikacja modelu obliczeniowego rzeki Wisłok z wykorzystaniem transformacji fali wezbraniowej, Infrastruktura i Ekologia Terenów Wiejskich, 8 (1), 15-28.
  • KZGW, 2020, Metodyka opracowania map zagrożenia powodziowego i map ryzyka powodziowego w II cyklu planistycznym.
  • Lai V., Huang Y.F., Koo C.H., Ahmed A.N., El-Shafie A., 2021, Optimization of reservoir operation at Klang Gate Dam utilizing a whale optimization algorithm and a Lévy flight and distribution enhancement technique, Engineering Applications of Computational Fluid Mechanics, 15 (1), 1682-1702, DOI: 10.1080/19942060.2021.1982777.
  • Latif S.D., Marhain S., Hossain M.S., Ahmed A.N., Sherif M., Sefelnasr A., El-Shafie A., 2021, Optimizing the operation release policy using charged system search algorithm: a case study of Klang Gates Dam, Malaysia, Sustainability, 13 (11), DOI: 10.3390/su13115900.
  • Le Ngo L., Madsen H., Rosbjerg D., 2007, Simulation and optimisation modelling approach for operation of the Hoa Binh reservoir, Vietnam, Journal of Hydrology, 336 (3-4), 269-281, DOI: 10.1016/j.jhydrol.2007.01.003.
  • Müller U., 2013, Implementation of the flood risk management directive in selected European countries, International Journal of Disaster Risk Science, 4, 115-125, DOI: 10.1007/s13753-013-0013-y.
  • Myronidis D., Emmanouloudis D., Stathis D., Stefanidis P., 2009, Integrated flood hazard mapping in the framework of the E.U. directive on the assessment and management of flood risks, Fresenius Environmental Bulletin, 18 (1), 102-111.
  • Nones M., 2017, Flood hazard maps in the European context, Water International, 42 (3), 324-334, DOI: 10.1080/02508060.2016.1269282.
  • Pasternack G.B., Wang C.L. Merz J.E., 2004, Application of a 2D hydrodynamic model to design of reach‐scale spawning gravel replenishment on the Mokelumne River, California, River Research and Applications, 20 (2), 205-225, DOI: 10.1002/rra.748.
  • Priest S.J., Suykens C., Van Rijswick H.F.M.W., Schellenberger T., Goytia S., Kundzewicz Z.W., Van Doorn-Hoekveld W.J., Beyers J., Homewood S., 2016, The European Union approach to flood risk management and improving societal resilience: lessons from the implementation of the Floods Directive in six European countries, Ecology and Society, 21 (4), DOI: 10.5751/ES-08913-210450.
  • Rani D., Moreira M.M., 2010, Simulation-optimization modeling: a survey and potential application in reservoir systems operation, Water Resources Management, 24, 1107-1138, DOI: 10.1007/s11269-009-9488-0.
  • Schultz B., 2008, Water management and flood protection of the polders in the Netherlands under the impact of climate change and man-induced changes in land use, Journal of Water and Land Development, 12, 71-94, DOI: 10.2478/v10025-009-0007-8.
  • Schumann A.H., Nijssen, D., 2011, Application of scenarios and multi-criteria decision making tools in flood polder planning, [in:] Flood Risk Assessment and Management, A. Schumann (eds), Springer, Dordrecht, DOI: 10.1007/978-90-481-9917-4_12.
  • Simonovic, S.P., 1992, Reservoir systems analysis: closing gap between theory and practice, Journal of Water Resources Planning and Management, 118 (3), 262-280, DOI: 10.1061/(ASCE)0733-9496(1992)118:3(262).
  • Tiukało A., Malinger A., Orczykowski T., Pasiok R., Bedryj M., Wawrzyniak M., Dysarz T., Grzelka T., Krawczak E., 2015, Ocena ryzyka powodziowego na potrzeby planów zarządzania ryzykiem powodziowym, Gospodarka Wodna, 3, 79-85.
  • Tsakiris G., 2014, Flood risk assessment: concepts, modelling, applications, Natural Hazards and Earth System Sciences, 14 (5), 1361-1369, DOI: 10.5194/nhess-14-1361-2014.
  • Ungvári B., Kis A., 2021, Reducing flood risk by effective use of flood-peak polders: A case study of the Tisza River, Journal of Flood Risk Management, 15 (3), DOI: 10.1111/jfr3.12823.
  • van Manen S.E., Brinkhuis M., 2005, Quantitative flood risk assessment for Polders, Reliability Engineering & System Safety, 90 (2-3), 229-237, DOI: 10.1016/j.ress.2004.10.002.
  • Warner J.F., van Staveren M.F., van Tatenhove J., 2018, Cutting dikes, cutting ties? Reintroducing flood dynamics in coastal polders in Bangladesh and the Netherlands, International Journal of Disaster Risk Reduction, 32, 106-112, DOI: 10.1016/j.ijdrr.2018.03.020.
  • Wei N., He S., Lu K., Xie J., Peng Y., 2022, Multi-stakeholder coordinated operation of reservoir considering irrigation and ecology, Water 14, (12), DOI: 10.3390/w14121970.
  • Wiśniewski J., 2016, Dlaczego powinniśmy zbudować polder Golina na Warcie?, Gospodarka Wodna, 1, 25-32.
  • Wright K.A., Goodman D.H., Som N.A., Alvarez J., Martin A., Hardy T.B, 2017, Improving hydrodynamic modelling: an analytical framework for assessment of two‐dimensional hydrodynamic models, River Research and Applications, 33 (1), 170- 181, DOI: 10.1002/rra.3067.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9da3a03-6f33-4031-8842-b0647ec986a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.