PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An overview of numerical methods for modeling x-ray propagation through a multi-lens system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article offers a comprehensive examination of the field of X-ray optics and the methods employed to simulate X-ray propagation through multi-lens systems. The publication presents three distinct approaches to address X-ray optics problems, including the utilization of oriented Gaussian beams, the fast Fourier transform, and the second-order Runge-Kutta method. It also provides an in-depth analysis of the paraxial wave equation used in X-ray optics and how the paraxial approximation can be employed to reduce computational complexity. Finally, the article provides adetailed mathematical description of the concave lens used in X-ray focusing. Furthermore, the article offers a comparative analysis of each method’s advantages, disadvantages, and limitations. It also highlights the differences in computation speed, required data points, and precision of each approach.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 9 poz., rys., wykr.
Twórcy
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
autor
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
Bibliografia
  • [1] A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, A compound refractive lens for focusing high-energy X-rays. Nature, Vol. 384,November 7., 1996.
  • [2] P. Wojda and S. Kshevetskii, Oriented Gaussian beams for high-accuracy computation with accuracy control of X-ray propagation through a multi-lens system. J. Synchrotron Rad. 26, 363–372, 2019.
  • [3] S. Kshevetskii, P. Wojda, and V. Maximov, A high-accuracy complex-phase method of simulating X-ray propagation through a multi-lens system. J. Synchrotron Rad. 23, 1305–1314, 2016.
  • [4] V. G. Kohn, An Exact Theory of Imaging with a Parabolic Continuously Refractive X-ray Lens. Journal of Experimental and Theoretical Physics, Vol. 97, No. 1, pp. 204–215, 2003.
  • [5] V. Kohn, I. Snigireva, and A. Snigirev, Diffraction theory of imaging with X-ray compound refractive lens. Optics Communications 216, 247–260, 2003.
  • [6] S. Kshevetskii, P. Wojda, and V. Maximov, The finite difference methods of computation of X-rays propagation through a system of many lenses. Days on Diffraction (DD), 2016.
  • [7] P. Wojda, S. Kshevetskii, and I. Lyatun, High-accuracy computation of hard X-ray focusing and imaging for refractive optics. J. Synchrotron Rad. 28, 741-755, 2021.
  • [8] O. Chubar, M. Rakitina, Y. chen Karen Chen-Wiegarta, Y. S. Chua,A. Fluerasua, D. Hidasa, and L. Wiegarta, Main functions, recent updates and applications of “Synchrotron Radiation Workshop” code. SPIE, Advances in Computational Methods for X-Ray Optics IV, 2017.
  • [9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes, The Art of Scientific Computing, Third Edition. Cambridge University Press, 2007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9d8e29a-2d20-478a-b9b5-4c2990705f97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.