PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie technik rozdzielania do identyfikacji i oznaczania lotnych związków tlenoorganicznych stosowanych w analityce procesowej wody i ścieków

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Usefulness of separation techniques for identification and determination of Oxygenated Volatile Organic Compounds used in process analytics of water and wastewater
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono przegląd i porównanie metodyk identyfikacji i oznaczania Lotnych Związków Tlenoorganicznych (LZT). Porównano metodyki klasyczne umożliwiające oznaczanie wybranej grupy związków chemicznych należących do LZT lub dokonywanie oznaczeń sumarycznej zawartości z metodykiami wykorzystującymi techniki rozdzielania. Lotne związki tlenoorganicze, do których zaliczane są aldehydy, alkohole, ketony, estry, etery oraz kwasy karboksylowe, należą do grupy priorytetowych zanieczyszczeń uwalnianych do atmosfery. Wytwarzane są głównie ze źródeł antropogenicznych, w tym na szeroką skalę w przemyśle rafineryjnym i włókienniczym. Charakteryzują się wysoką złowonnością oraz toksycznością, a w niektórych przypadkach właściwościami kancerogennymi. Dodatkowo, przyczyniają się do powstawania wtórnych zanieczyszczeń atmosfery oraz zubożania warstwy ozonowej. Negatywne oddziaływanie LZT na środowisko wymusza potrzebę opracowania nowych metod analitycznych umożliwiających ich identyfikację i oznaczenie z dużą dokładnością, na coraz niższych poziomach stężeń. Aktualnie dostępnych jest wiele urządzeń pomiarowych, które różnią się pod względem technicznym, metrologicznym i użytkowym. Zastosowanie technik rozdzielania w procedurze analitycznej umożliwia znaczne zwiększenie spektrum informacji uzyskiwanych z pojedynczej analizy. Najpopularniejsze metody stosowane do oznaczania LZT w próbkach zawierających wodną matrycę, wykorzystują chromatografię gazową z detektorami uniwersalnymi typu MS i FID oraz selektywnymi ECD, PID i O-FID. Stosowana jest również chromatografia cieczowa, w tym głównie wysokosprawna chromatografia cieczowa w układach faz odwróconych (RP-HPLC), chromatografia jonowa i jonowymienna jak również elektroforeza kapilarna. Zastosowanie technik spektroskopowych i woltamerometrycznych jest ograniczone do oznaczeń głównego składnika próbki, wobec czego te techniki wykazują wysoką skuteczność w przypadku analiz wody, natomiast nie znajdują zastosowania podczas oznaczeń próbek o złożonym składzie matrycy tj. próbki ścieków przemysłowych.
EN
The paper presents a review and comparison of methods for identification and determination of Oxygenated Volatile Organic Compounds (O-VOCs). Were compared the classical methodology which allows the determination of a selected group of compounds belonging to the LZT or determinations of its total content with the methodologies utilizing separation techniques. Oxygenated Volatile Organic Compounds including aldehydes, alcohols, ketones, esters, ethers and carboxylic acids, are classified as priority pollutants released to the atmosphere. They are produced mainly from anthropogenic sources, mainly from a large-scale plants of the refinery and textile industries. They have odorous properties and are high toxicity and in some cases carcinogenic. In addition, they contribute to the formation of secondary atmospheric pollutants and depletion of the ozone layer. The negative effects of O-VOCs on the environment, forces the need of development of new analytical methods to enable their identification and determination with high accuracy at low concentration levels. Currently, there are many measuring devices, which differ in terms of technical, metrological and functional. The use of separation techniques in the analytical procedure allows a significant increase in range of information obtained from a single analysis.The most common methods used for determining O-VOC in aqueous samples, use of gas chromatography with universal MS and FID and selective ECD, PID and O-FID detectors. A liquid chromatography is also used, including Reversed Phase - High Performance Liquid Chromatography, ion chromatography and ion exchange chromatography as well as capillary electrophoresis. A spectroscopic and voltamperometric techniques are limited to the quantification of the main component of the sample, therefore have a high efficacy in the case of analyzes of water and are not applicable for determinations of complex sample matrices such as sewage samples.
Czasopismo
Rocznik
Strony
23--36
Opis fizyczny
Bibliogr. 76 poz., tab.
Twórcy
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska
autor
  • Katedra Inżynierii Chemicznej i Procesowej, Wydział Chemiczny, Politechnika Gdańska
Bibliografia
  • 1. E. Gallegoa, F.J. Rocaa, J.F. Perales a, G. Sánchez, P. Esplugas, Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD–GC/MS., Waste Manage., 32 (2012) 2469.
  • 2. B. Nijssen, T. Kamperman, J. Jetten, Acetaldehyde in mineral water stored in polyethylene terephtalate (PET) bottles: odour threshold and quantification.; Packag. Technol. Sci., 9 (1996) 175.
  • 3. P.H. Dalton, D.D. Dilks, M.I. Banton, Evaluation of odor and sensory irritation thresholds for methyl isobutyl ketone in humans., AIHAJ, 61 (2000) 340.
  • 4. T. Tarko; Komponenty aromatu napojów alkoholowych. Laboratorium przemysłowe, 11 (2006) 39.
  • 5. S. Król, B. Zabiegała, J. Namieśnik, Monitorowanie lotnych związków organicznych w powietrzu atmosferycznym., Analityka, 4 (2010) 26.
  • 6. Rozporządzenie Ministra Zdrowia z dnia 28 września 2005 r. w sprawie wykazu substancji niebezpiecznych wraz z ich klasyfikacja i oznakowaniem (Dz. U. 2005 nr 201, poz. 1674).
  • 7. R.M. Thomas, The rising incidence of asthma., Asthma Mag., 4 (1999) 6.
  • 8. R. Beale, P.S. Liss, J.L. Dixon, P.D. Nightingale, Quantification of oxygenated volatile organic compounds in seawater by membrane inlet-proton transfer reaction/mass spectrometry. Anal. Chim. Acta, 706 (2011) 128.
  • 9. K. Grodowska, A. Parczewski, Organic solvents in the pharmaceutical industry., Acta Pol Pharm-Drug Res., 67 (2010) 3.
  • 10. J. Tian; Application of static headspace gas chromatography for determination of acetaldehyde in beer., J. Food Comp. Anal., 23 (2010) 475.
  • 11. D.K. Nguyen, A. Bruchet; High Resolution Capillary GC-MS Analysis of Low Molecular Weight Organic Compounds in Municipal Wastewater., J. High Resolut. Chromatogr., 17 (1994) 153.
  • 12. A. Marquez, M. P. Serratosa, J. Merida, L. Zea, L. Moyano, Optimization and validation of an automated DHS–TD–GC–MS method for the determination of aromatic esters in sweet wines., Talanta, 123 (2014) 32.
  • 13. M. Serrano, M. Gallego, M. Silva; Static headspace gas chromatography–mass spectrometry for the one-step derivatisation and extraction of eleven aldehydes in drinking water., J. Chromatogr. A, 1307 (2013) 158.
  • 14. N. Sugaya, T. Nakagawa, K. Sakurai, M. Morita, S. Onodera, Analysis of aldehydes in water by head space-GC/MS., J. Health Sci., 47 (2001) 21.
  • 15. M.L. Davi, F. Gnudi, Phenolic compounds in surface water., Wat. Res., 33 (1999) 3213.
  • 16. B. Bennett, B. F. J. Bowler, S. R. Larter; Determination of C0-C3 Alkylphenols in Crude Oils and Waters., Anal. Chem., 68 (1996) 3697.
  • 17. A. Kovács, M. Mörtl, A. Kende, Development and optimization of a method for the analysis of phenols and chlorophenols from aqueous samples by gas chromatography–mass spectrometry, after solidphase extraction and trimethylsilylation., Microchem. J., 99 (2011) 125.
  • 18. A. Prieto, S. Schrader, M. Moeder, Determination of organic priority pollutants and emerging compounds in wastewater and snow samples using multiresidue protocols on the basis of microextraction by packed sorbents coupled to large volume injection gas chromatography–mass spectrometry analysis. J. Chromatogr. A, 1217 (2010) 6002.
  • 19. M. Llompart, M. Lourido, P. Landin, C. Garcia-Jares, R. Cela, Optimization of a derivatization–solidphase microextraction method for the analysis of thirty phenolic pollutants in water Samales., J. Chromatogr. A, 963 (2002) 137.
  • 20. A. Kabir, C. Hamlet, A. Malik, Parts per quadrillion level ultra-trace determination of polar and nonpolar compounds via solvent-free capillary microextraction on surface-bonded sol–gel polytetrahydrofuran coating and gas chromatography–flame ionization detection., J. Chromatogr. A, 1047 (2004) 1.
  • 21. M. Saraji, M. Bakhshi, Determination of phenols in water samples by single-drop microextraction followed by in-syringe derivatization and gas chromatography–mass spectrometric detection, J. Chromatogr. A, 1098 (2005) 30.
  • 22. C. Deng, N. Yao, N. Li, X. Zhang, Headspace single-drop microextraction with in-drop derivatization for aldehyde analysis., J. Sep. Sci., 28 (2005) 2301.
  • 23. T. Gabrio, A. Bertsch, Determination of carbonyl compounds in pool water with O-(2,3,4,5,6- pentafluorobenzyl)hydroxyamine hydrochloride and gas chromatographic–tandem mass spectrometric analysis. J. Chromatogr. A, 1046 (2004) 293.
  • 24. H.G. Schmarr, T. Potouridis, S. Ganß, W. Sang, B. Kopp, U. Bokuz, U. Fischer, Analysis of carbonyl compounds via headspace solid-phase microextraction with on-fiber derivatization and gas chromatographic–ion trap tandem mass spectrometric determination of their O-(2,3,4,5,6- pentafluorobenzyl)oxime derivatives., Anal. Chim. Acta, 617 (2008) 119.
  • 25. T. Górecki, P. Martos, J. Pawliszyn, Strategies for the Analysis of Polar Solvents in Liquid Matrixes., Anal. Chem., 70 (1998) 19.
  • 26. F. Zhoua, X. Li, Z. Zenga, Determination of phenolic compounds in wastewater samples using a novel fiber by solid-phase microextraction coupled to gas chromatography. Anal. Chim. Acta, 538 (2005) 63.
  • 27. C. Aguilar, H-G. Janssen, C.A. Cramers, On-line coupling of equilibrium-sorptive enrichment to gas chromatography to determine low-molecular-mass pollutants in environmental water samples., J. Chromatogr. A, 867 (2000) 207.
  • 28. S. Kulkarni, A.M. Shearrow, A. Malik; Sol–gel immobilized short-chain poly(ethylene glycol) coating for capillary microextraction of underivatized polar analytes., J. Chromatogr. A, 1174 (2007) 50.
  • 29. A. Kabir, C. Hamlet, A. Malik, Parts per quadrillion level ultra-trace determination of polar and nonpolar compounds via solvent-free capillary microextraction on surface-bonded sol–gel polytetrahydrofuran coating and gas chromatography–flame ionization detection., J. Chromatogr. A, 1047 (2004) 1.
  • 30. J. Olejniczak, J. Staniewski, Enrichment of phenols from water with in-situ derivatization by in-tube solid phase microextraction–solvent desorption prior to off-line gas chromatographic determination with largevolume injection., Anal. Chim. Acta, 588 (2007) 64.
  • 31. P. Bartak, P. Frnkova, L. Cap, Determination of phenols using simultaneous steam distillation– extraction., J. Chromatogr. A, 867 (2000) 281.
  • 32. A. Daneshfar, T. Khezeli; Extraction of phenolic compounds from environmental water samples using oil-in-water emulsions. Microchim. Acta, 167 (2009) 211.
  • 33. R.S. Jian, Y.S. Huang, S.L. Lai, L.Y. Sung, C. J. Lu, Compact instrumentation of a μ-GC for real time analysis of sub-ppb VOC mixtures., Microchem. J., 108 (2013) 161.
  • 34. T. M. Cummins, G. A. Robbins, B. J. Henebry, C. R. Goad, E. J. Giblert, M. E. Miller, J. D. Stuart; A Water Extraction, Static Headspace Sampling, Gas Chromatographic Method to Determine MTBE in Heating Oil and Diesel Fuel. Environ. Sci. Technol., 35 (2001) 1202.
  • 35. US Environmental Protection Agency, Determination of carbonyl compounds in drinking water by pentafluorobenzylhydroxylamine derivatization and capillary gas chromatography with electron capture detection, Office of Research and Development, US EPA, Method 556, 1998.
  • 36. I. Kalkowska, B. Giemza, J. Nawrocki, Powstawanie aldehydów w procesie ozonowania wody. Ochr. Śr., 4 (1995) 37.
  • 37. J. Nawrocki, A. Dabrowska, A. Borcz, Investigation of carbonyl compounds in bottled waters from Poland., Water Res., 36 (2002) 4893.
  • 38. S.W. Tsai, C-M. Chang, Analysis of aldehydes in water by solid-phase microextraction with on-fiber derivatization., J. Chromatogr. A, 1015 (2003) 143.
  • 39. H.T.H. Nguyen, N. Takenaka, H. Bandow, Y. Maeda, Trace level determination of low-molecular-weight alcohols in aqueous samples based on alkyl nitrate formation and gas chromatography. Anal. Sci., 17 (2001) 639.
  • 40. ASTM D 5599: Standard Test Method for Determination of Oxygenates in Gasoline by Gas Chromatography and Oxygen Selective Flame Ionization Detection.
  • 41. G. R. Verga, A. Sironi, W. Schneider, J. Ch. Frohne; Selective determination of oxygenates in complex samples with the O-FID analyzer. J. High Resol. Chromatogr., 11 (1998) 248.
  • 42. PN-EN 1601:2001: Ciekłe przetwory naftowe, Benzyna bezołowiowa, Oznaczanie tlenowych związków organicznych i całkowitej zawartości organicznie związanego tlenu metodą chromatografii gazowej (OFID).
  • 43. Z. Burnus, Badania jakościowe paliw oxydiesel techniką chromatografii gazowej z systemem detekcji (O-FID)., Nafta-Gaz, 9 (2010) 849.
  • 44. PN-EN 13132:2005: Ciekłe przetwory naftowe, Benzyna bezołowiowa, Oznaczanie tlenowych związków organicznych i całkowitej zawartości organicznie związanego tlenu metodą chromatografii gazowej z przełączaniem kolumny.
  • 45. ASTM D4815 – 13: Standard Test Method for Determination of MTBE, ETBE, TAME, DIPE, tertiary- Amyl Alcohol and C1 to C4 Alcohols in Gasoline by Gas Chromatography.
  • 46. M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, Recent developments in comprehensive twodimensional gas chromatography (GCxGC). Introduction and instrumental set-up., Trends Anal. Chem., 25 (2006) 438.
  • 47. J. Luong, R. Gras, H. Cortes, R.A. Shellie, Multi-dimensional gas chromatography with a planar microfluidic device for the characterization of volatile oxygenated organic compounds., J. Chromatogr. A, 1255 (2012) 216.
  • 48. Q. Li, X. Wang, D. Yuan, Preparation of solid-phase microextraction fiber coated with single-walled carbon nanotubes by electrophoretic deposition and its application in extracting phenols from aqueous samples., J. Chromatogr. A, 1216 (2009) 1305.
  • 49. X. Liu, Y. Ji, Y. Zhang, H. Zhang, M. Liu, Oxidized multiwalled carbon nanotubes as a novel solid-phase microextraction fiber for determination of phenols in aqueous samples., J. Chromatogr. A, 1165 (2007) 10.
  • 50. A.K.K.V. Pillai, K. Gautam, A. Jain, K.K. Verma, Headspace in-drop derivatization of carbonyl compounds for their analysis by high-performance liquid chromatography-diode array detection. Anal. Chim. Acta, 632 (2009) 208.
  • 51. R. Peters, J. Hellenbrand, Y. Mengerink, Sj. Van der Wal, On-line determination of carboxylic acids, aldehydes and ketones by high-performance liquid chromatography-diode array detection-atmospheric pressure chemical ionisation mass spectrometry after derivatization with 2-nitrophenylhydrazine. J. Chromatogr. A, 1031 (2004) 35.
  • 52. C. Zwiener, T. Glauner, F. H. Frimmel, Method optimization for the determination of carbonyl compounds in disinfected water by DNPH derivatization and LC–ESI–MS–MS., Anal. Bioanal. Chem., 372 (2002) 615.
  • 53. T. Kemmei, S. Kodama, A. Yamamoto, Y. Inoue, K. Hayakawa, Determination of Low-Level Ethylenediaminetetraacetic Acid in Water Samples by Ion Chromatography with Ultraviolet Detection., Chromatographia, 65 (2007) 229.
  • 54. D. Brocco, R. Tappa, Determination of organic and inorganic acid species in the atmosphere and in rain-water by ion chromatography., J. Chromatogr., 367 (1986) 240.
  • 55. J.C A. Morales,H. L. de Medina, M. G. de Navaa, H. Velhquez, M. Santanab, Determination of organic acids by ion chromatography in rain water in the State of Zulia, Venezuela., J. Chromatogr. A, 671 (1994) 193.
  • 56. K. Fischer, J. Kotalik, A. Kettrup, Chromatographic properties of the ion-exclusion column IonPac ICEAS6 and its application in environmental analysis, Part II: application in environmental analysis. J. Chromatogr. Sci., 38 (2000) 409.
  • 57. K. Tsukagoshi, T. Kameda, M. Yamamoto, R. Nakajima, Separation and determination of phenolic compounds by capillary electrophoresis with chemiluminescence detection., J. Chromatogr. A, 978 (2002) 213.
  • 58. J. Zhang, T. Su, H.K. Lee, Development and application of microporous hollow fiber protected liquidphase microextraction via gaseous diffusion to the determination of phenols in water., J. Chromatogr. A, 1121 (2006) 10.
  • 59. S. Morales, R. Cela, Highly selective and efficient determination of US Environmental Protection Agency priority phenols employing solid-phase extraction and non-aqueous capillary electrophoresis., J. Chromatogr. A, 896 (2000) 95.
  • 60. S. Morales, R. Cela, Capillary electrophoresis and sample stacking in non-aqueous media for the analysis of priority pollutant phenols., J. Chromatogr. A, 846 (1999) 401.
  • 61. Council Directive 79/869/EEC of 9 October 1979; Concerning the methods of measurement and frequencies of sampling and analysis of surface water intended for the abstraction of drinking water in the Member States.
  • 62. Standard Methods for Examination of Water & Wastewater, 21st ed, American Public Health Association, Washington, DC (2005) 5-43/5-47.
  • 63. M. Arvand, E. Bozorgzadeh, S. Shariati, M. A. Zanjanchi, Ionic liquid-based dispersive liquid–liquid microextraction for the determination of formaldehyde in wastewaters and detergents. Environ. Monit. Assess., 184 (2012) 7597.
  • 64. M. Eisapour, F. Shemirani, B. Majidi, M. Baghdadi, Ultrasound assisted cold-induced aggregation: an improved method for trace determination of volatile phenol. Microchim. Acta, 177 (2012) 349.
  • 65. D. L. Giokas, G. Z. Tsogas, A. G. Vlessidis, On-line derivatization coupled to flow injection permanganate chemiluminescence detection of total carbonyl compounds in natural waters and drinking water., Anal. Chim. Acta, 651 (2009) 188.
  • 66. W. Caoa, X. Mua, J. Yangb, W. Shi, Y. Zheng, Flow injection–chemiluminescence determination of phenol using potassium permanganate and formaldehyde system., Spectrochim. Acta, Part A; 66 (2007) 58.
  • 67. W. Liua, W. Caoa, W. Liub, K. Dua, P. Gong; Determination of phenol by flow-injection with chemiluminescence detection based on the hemin-catalysed luminol–hydrogen peroxide reaction., Spectrochim. Acta Part A, 85 (2012) 283.
  • 68. H. Qi, J. Lv, B. Li, Determination of phenol at ng l−1 level by flow-injection chemiluminescence combined with on-line solid-phase extraction., Spectrochim. Acta, Part A, 66 (2007) 874.
  • 69. J. Wang, Analytical Electrochemistry, third ed., John Wiley & Sons, 2006.
  • 70. K. V. Ozdokur, L. Pelit, H. Ertas, S. Timur, F.N. Ertas, Head space voltammetry: A novel voltammetric method for volatile organics and a case study for phenol. Talanta, 98 (2012) 34.
  • 71. I.E. Mülazımoğlu, A. D. Mülazımoğlu, E. Yılmaz, Determination of quantitative phenol in tap watersamples as electrochemical using 3,3'-diaminobenzidine modified glassy carbon sensor electrode., Desalination, 268 (2011) 227.
  • 72. McMurry J.: Chemia organiczna, Tom II, PWN, Warszawa, 2010.
  • 73. O. Abbas, C. Rebufa, N. Dupuy, J. Kister, FTIR—Multivariate curve resolution monitoring of photo- Fenton degradation of phenolic aqueous solutions Comparison with HPLC as a reference method., Talanta, 77 (2008) 200.
  • 74. J.N. Harrick, International Reflection Spectroscopy., Interscience Publishers, N.Y. 1967.
  • 75. J. Araña, E. T. Rendón, J.M. D. Rodrı́gue, J.A. H. Melián, O. G. Dı́az, J. P.Peña, Highly concentrated phenolic wastewater treatment by the Photo-Fenton reaction, mechanism study by FTIR-ATR., Chemosphere, 44 (2001)1017.
  • 76. J. Wei, Y.i Songa, X. Tub, L. Zhao, E. Zhi, Pretreatment of dry-spun acrylic fiber manufacturing wastewater by Fenton process: Optimization, kinetics and mechanisms. Chem. Eng. J., 218 (2013) 319.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9d8a48d-54ea-4a27-8cbb-1c5675a01b69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.