PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal nanoparticles in surface waters – a risk to aquatic organisms

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nanocząstki metali w wodach powierzchniowych – zagrożenie dla organizmów wodnych
Języki publikacji
EN PL
Abstrakty
EN
Purpose: The aim of this paper is to provide information on the risks posed by metal nanoparticles released into surface waters. Introduction: Currently, the use of nanoparticles of metal and metal oxides (NPMOs) is extremely popular in various industries, and in medicine and households. Nanoparticles and nanocompounds have become significant contributors to technological progress due to their physicochemical properties such as the melting point, electrical and thermal conductivity, catalytic activity, light absorption and scattering, as well as biocompatible and bactericidal properties. These functions cause their increased performance compared to their macro counterparts. However, it should be noted that the properties of nanocomponents can create new risks to the environment and consumers. Based on existing literature, a conclusion can be drawn that metal nanoparticles are a potential threat to plant and animal organisms, and humans. It is, therefore, necessary to intensify efforts to understand the mobility, reactivity and durability of nanocomponents in various environmental components, especially in the aquatic environment, and their toxicity to organisms. Methodology: This paper is a literature review. Conclusions: The increasing use of nanosubstances, in both commercial and industrial products, has caused an increasing concentration and diversity of these substances in aquatic ecosystems. Based on the analysis of literature reports, it can be concluded that the size of nanoparticles, their structure and arrangement, as well as surface properties, are subject to constant changes in the environment as a result of their interactions with other components, and of the balances shaped by a variety of geochemical and biological factors. Numerous studies conducted in recent years in the field of nanoecotoxicology have demonstrated the existence of a risk to aquatic organisms, which could lead to their impaired development and even death. Unfortunately, the lack of a standard technique for assessing the toxicity of nanoparticles in various biological systems, such as the reproductive, respiratory, nervous and gastrointestinal systems, and the developmental stages of aquatic organisms, makes it impossible to conduct such studies in a standardised fashion. Reports of the toxicity of metal and metal oxide nanoparticles in relation to various forms of living organisms warrant in-depth investigations into how these particles function in aqueous solutions and interact with standard substances.
PL
Cel: Celem artykułu jest przedstawienie informacji na temat zagrożeń, jakie stanowią nanocząstki metali wprowadzane do wód powierzchniowych. Wprowadzenie: Obecnie wykorzystanie nanocząstek metali i tlenków metali (NPMOs) cieszy się ogromną popularnością w różnych gałęziach przemysłu, medycynie i gospodarstwach domowych. Nanocząstki i nanozwiązki zyskały na znaczeniu w postępie technologicznym ze względu na swoje właściwości fizykochemiczne takie jak temperatura topnienia, przewodność elektryczna i cieplna, aktywność katalityczna, absorpcja i rozpraszanie światła oraz swoje biokompatybilne i bakteriobójcze własności. Cechy te powodują ich zwiększoną wydajność w stosunku do ich odpowiedników w skali makro. Należy jednak pamiętać, że właściwości, jakie posiadają nanozwiązki, mogą generować nowe ryzyko dla środowiska naturalnego oraz konsumentów. Analizując dotychczasową literaturę należy stwierdzić, że nanocząstki metali stanowią potencjalne zagrożenia dla organizmów roślinnych i zwierzęcych, w tym także człowieka. Konieczna jest zatem intensyfikacja prac, które pozwolą na zrozumienie mobilności, reaktywności i trwałości nanozwiązków w różnych komponentach środowiska, zwłaszcza w środowisku wodnym, oraz toksyczności w stosunku do organizmów. Metodologia: Artykuł został opracowany na podstawie przeglądu literatury z zakresu poruszanej tematyki. Wnioski: Rosnące wykorzystanie nanosubstancji, zarówno w produktach komercyjnych, jak i przemysłowych, determinuje coraz większe stężenie i różnorodność tych substancji w ekosystemach wodnych. Na podstawie analizy doniesień literaturowych należy stwierdzić, że wielkość nanocząstek, ich budowa i układ oraz właściwości powierzchni podlegają ciągłym zmianom w środowisku w wyniku interakcji z innymi składnikami i równowag kształtowanych przez różnorodne czynniki bio- i geochemiczne. Liczne badania przeprowadzone w ciągu ostatnich lat w dziedzinie nanoekotoksykologii wskazują na zagrożenie w stosunku do organizmów wodnych prowadzące do upośledzenia w rozwoju a nawet śmierci organizmów. Niestety, brak standardowej techniki oceny toksyczności nanocząstek w różnych układach biologicznych, takich jak układ rozrodczy, oddechowy, nerwowy, żołądkowo-jelitowy i stadia rozwojowe organizmów wodnych, powoduje brak możliwości standardowego prowadzenia takich badań. Doniesienia o toksyczności NPMOs w odniesieniu do różnych form organizmów żywych powodują, że niezbędna jest wiedza w zakresie ich funkcjonowania w roztworach wodnych oraz interakcji z podstawowymi substancjami.
Twórcy
  • The State Water Holding Polish Waters / Państwowe Gospodarstwo Wodne Wody Polskie
  • Scientific and Research Centre for Fire Protection – National Research Institute / Centrum Naukowo - Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego – Państwowy Instytut Badawczy
Bibliografia
  • [1] Rabajczyk A., Possibilities for analysis of selected nanometals in solid environmental samples, „Desalination and Water Treatment” 2016, 57, 3, 1598–1610, https://doi.org/10.1080/19443994.2015.1030109.
  • [2] Kurwadkar S., Pugh K., Gupta A., Ingole S., Nanoparticles in the Environment: Occurrence, Distribution, and Risks, „Journal of Hazardous, Toxic, and Radioactive Waste” 2015, 19, 3, https://doi.org/10.1061/(ASCE) HZ.2153-5515.0000258.
  • [3] Feijoo S., González-García S., Moldes-Diz Y., Vazquez--Vazquez C., Feijoo G., Moreira M. T., Comparative life cycle assessment of different synthesis routes of magnetic nanoparticles, „Journal of Cleaner Production” 2017, 143, 528–538, https://doi.org/10.1016/j.jclepro.2016.12.079.
  • [4] Amde M., Liu J., Tan Z-Q., Bekana D., Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review, „Environmental Pollution” 2017, 230, 250–267, https://doi.org/10.1016/j.envpol.2017.06.064.
  • [5] Bundschuh M., Filser J., Lüderwald S., McKee M. S., Metreveli G., Schaumann G. E., Schulz R., Wagner S., Nanoparticles in the environment: where do we come from, where do we go to?, „Environmental Sciences Europe” 2018, 30, 1, https://doi.org/10.1186/s12302-018-0132-6.
  • [6] Baker T. J., Tyler Ch. R., Galloway T. S., Impacts of metal and metal oxide nanoparticles on marine organism, „Environmental Pollution” 2014, 5, 257–271, https://doi.org/10.1016/j.envpol.2013.11.014.
  • [7] Zhou H., Wang X., Zhou Y., Yao H., Ahmad F., Evaluation of the toxicity of ZnO nanoparticles to Chlorella, vulgaris by use of the chiral perturbation approach, „Analytical and Bioanalytical Chemistry” 2014, 406, 3689–3695, https://doi.org/10.1007/s00216-014-7773-0.
  • [8.] Kołodziejczak-Radzimska A, Jesionowski T., Zinc Oxide – From Synthesis to Application: A Review, „Materials” 2014, 7, 2833–2881, https://doi.org/10.3390/ma7042833.
  • [9] Sahu S. C., Hayes A. W., Toxicity of nanomaterials found in human environment, „Toxicology Research and Application” 2017, 1, https://doi.org/10.1177/2397847317726352.
  • [10] Goyal P., Basniwal R. K., Toxicity of Nanoparticles and Their Impact on Environment, „Soil Biology” 2017, 48, 531–543, https://doi.org/10.1007/978-3-319-46835-8_21.
  • [11] Măruţescu L., Chifiriuc M. C., Postolache C., Pircalabioru G. G., Bolocan A., Nanoparticles’ toxicity for humans and environment, „Nanomaterials for Drug Delivery and Therapy” 2019, 515–535, https://doi.org/10.1016/B978-0-12-816505-8.00012-6.
  • [12] Han Y., Kim D., Hwang G., Lee B., Eom I., Kim P. J., Tong M., Kim H., Aggregation and dissolution of ZnO nanoparticles synthesized bydifferent methods: Influence of ionic strength and humic acid, „Colloids and Surfaces A: Physicochemical and Engineering Aspects” 2014, 451, 7–15, https://doi.org/10.1016/j.colsurfa.2014.03.030.
  • [13] Pourzahedi L., Eckelman M. J., Comparative life cycle assessment of silver nanoparticle synthesis routes, „Environmental Science: Nano” 2015, 2, 4, 361–369, https://doi.org/10.1039/C5EN00075K.
  • [14] Fubini B., Ghiazza M., Fenoglio I., Physico-chemical features of engineered nanoparticles relevant to their toxicity, „Nanotoxicology” 2010, 4, 347–363, https://doi.org/10.3109/17435390.2010.509519.
  • [15] Sajid M., Ilyas M., Basheer C., Tariq M., Daud M., Baig N., Shehzad F., Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects, „Environmental Science and Pollution Research” 2014, 22, 6, 4122–4143, https://doi.org/10.1007/s11356-014-3994-1.
  • [16] Bourdineaud J. P., Štambuk A., Šrut M., Radić Brkanac S., Ivanković D., Lisjak D., Sauerborn Klobučar R., Dragun Z., Bačić N., Klobučar, G. I. V., Gold and silver nanoparticles effects to the earthworm Eisenia fetida – the importance of tissue over soil concentrations, „Drug and Chemical Toxicology” 2019, 1–18, https://doi.org/10.1080/01480545.2019.1567757.
  • [17] Sánchez-López K. B., De los Santos-Ramos F.J., Gómez-Acata E.S., Luna-Guido M., Navarro-Noya Y. E., Fernández-Luqueño F., Dendooven L., TiO2 nanoparticles affect the bacterial community structure and Eisenia fetida (Savigny, 1826) in an arable soil, „PeerJ” 2019, 7, 6939, https://doi.org/10.7717/peerj.6939.
  • [18] Miller R. J., Lenihan H. S., Muller E. B., Tseng N., Hanna S. K., Keller A A., Impacts of metal oxide nanoparticles on marine phytoplankton, „Environmental Science & Technology” 2010, 44, 7329–7334, https://doi.org/10.1021/es100247x.
  • [19] Haque E., Ward A., Zebrafish as a Model to Evaluate Nanoparticle Toxicity, „Nanomaterials” 2018, 8, 7, https://doi.org/10.3390/nano8070561.
  • [20] Ivask A., Juganson K., Bondarenko O., Mortimer M., Aruoja V., Kasemets K., Blinova I., Heinlaan M., Slaveykova V., Kahru A., Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review, „Nanotoxicology” 2014, 8, 57–71, https://doi.org/10.3109/17435390.2013.855831.
  • [21] Song G., Ho W., Gao Y., Wang Y., Lin L, Zhang Z., Niu Q., Ma R., Mu L. Wang H., Effects of Cuo nanoparticles on Lemna minor, „Botanical Studies” 2016, 57, 1, https://doi.org/10.1186/s40529-016-0118-x.
  • [22] Belava V. N., Panyuta O. O., Yakovleva G. M., Pysmenna Y. M., Volkogon M. V., The Effect of Silver and Copper Nanoparticles on the Wheat-Pseudocercosporella herpotrichoides Pathosystem, „Nanoscale Research Letters” 2017, 12, 1, https://doi.org/10.1186/s11671-017-2028-6.
  • [23] Kelley M., Current K. M., Dissanayake N. M., Obare S. O., Effect of Iron Oxide Nanoparticles and Amoxicillin on Bacterial Growth in the Presence of Dissolved Organic Carbon, „Biomdicines” 2017, 5, 3, https://doi.org/10.3390/biomedicines5030055.
  • [24] Khan M. S., Qureshi N. A., Jabeen F., Assessment of toxicity in fresh water fish Labeo rohita treated with silver nanoparticles, „Applied Nanoscience” 2017, 7, 167–179, https://doi.org/10.1007/s13204-017-0559-x.
  • [25] Sukhanova A., Bozrova S., Sokolov P., Berestovoy M., Karaulov A., Nabiev I., Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties, „Nanoscale research letters” 2018, 13, 1, https://doi.org/10.1186/s11671-018-2457-x.
  • [26] Buzea C, Pachec I. I., Robbie K., Nanomaterials and nanoparticles: Sources and toxicity, „Biointerphases” 2007, 2, 4, 17–71, https://doi.org/10.1116/1.2815690.
  • [27] Christian P., Von der Kammer F., Baalousha M., Hofmann T., Nanoparticles: structure, properties, preparation and behavior in environmental media, „Ecotoxicology” 2008, 17, 326–343, https://doi.org/10.1007/s10646-008-0213-1.
  • [28] Ge L., Li Q., Wang M., Ouyang J., Li X., Xing M.M.Q., Nanosilver particles in medical applications: synthesis, performance, and toxicity, „International Journal Nanomedicine” 2014, 9, 2399–2407, https://doi.org/10.2147/IJN.S55015.
  • [20] Zou J., Hannula M., Misra S., Feng H., Labrador R., Aula A. S., Hyttinen J., Pyykkö I., Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection, „Journal of Nanobiotechnology” 2015, 13, 1, https://doi.org/10.1186/s12951-015-0065-9.
  • [30] Farooq M. U., Novosad V., Rozhkova E. A., Wali H., Ali A., Fateh A. A., Neogi P., B., Wang, Z., Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells, „Scientific Reports” 2018, 8, 1, https://doi.org/10.1038/s41598-018-21331-y.
  • [31] Sun C., Li Y., Li Z., Su Q., Wang Y., Liu, X., Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials, „Journal of Nanomaterials” 2018, 1–7, https://doi.org/10.1155/2018/6546193.
  • [32] Ingle A. P., Duran N., Rai M., Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review, „Applied Microbiology and Biotechnology” 2013, 98, 3, 1001–1009, https://doi.org/10.1007/s00253-013-5422-8.
  • [33] Jiang J., Pi J., Cai J., The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications, „Bioinorganic Chemistry and Applications” 2018, 1–18, https://doi.org/10.1155/2018/1062562.
  • [34] Jin S. E., Jin J. E., Hwang W., Hong S. W., Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection, „International Journal of Nanomedicine” 2018, 14, 1737–1751, https://doi.org/10.2147/IJN.S192277.
  • [35] Barui A. K., Kotcherlakota R., Patra C. R., Biomedical applications of zinc oxide nanoparticles, „Inorganic Frameworks as Smart Nanomedicines” 2018, 239–278, https://doi.org/10.1016/B978-0-12-813661-4.00006-7.
  • [36] Mishra P. K., Mishra H., Ekielski A., Talegaonkar S., Vaidya B., Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications, „Drug Discovery Today” 2017, 22, 12, 1825–1834, https://doi.org/10.1016/j.drudis.2017.08.006.
  • [37] Rabajczyk A., El Yamani N., Dusinska M., The effect of time on the stability of iron oxide nanoparticles in environmental acids, „Water Environment Research” 2017, 89, 5, 416-423, https://doi.org/10.2175/106143016X14609975747685.
  • [38] Çeşmeli S., Biray Avci C., Application of Titanium Dioxide (TiO2) Nanoparticles in Cancer Therapies, „Journal of Drug Targeting” 2019, 1–13, https://doi.org/10.1080/1061186X.2018.1527338.
  • [39] Gajbhiye S., Sakharwade S., Silver Nanoparticles in Cosmetics, „Journal of Cosmetics, Dermatological Sciences and Applications” 2016, 6, 48–53, https://doi.org/10.4236/jcdsa.2016.61007.
  • [40] Lu P. J., Huang S. C., Chen Y. P., Chiueh L. C., Shih D. Y. C., Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, „Journal of Food and Drug Analysis” 2015, 23, 3, 587–594, https://doi.org/10.1016/j.jfda.2015.02.009.
  • [41] Lu P. J., Huang S. C., Chen Y. P., Chiueh L. C., Shih D. Y. C., Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, „Journal of Food and Drug Analysis” 2015, 23, 3, 587–594, https://doi.org/10.1016/j.jfda.2015.02.009.
  • [42] Dréno B., Alexis A., Chuberre B., Marinovich M., Safety of titanium dioxide nanoparticles in cosmetics, „Journal of the European Academy of Dermatology and Venereology” 2019, 33, S7, 34–46, https://doi.org/10.1111/jdv.15943.
  • [43] Hoffmann T., Amaral Peters D., Angioletti B., Bertoli S., Peres Vieira L., Ratto Reiter M.G., Krebs De Souza C., Potentials Nanocomposites in Food Packaging, „Chemical Engineering Transactions” 2019, 75, 253–258.
  • [44] Huang Y., Mei L., Chen X., Wang Q., Recent Developments in Food Packaging Based on Nanomaterials, „Nanomaterials” 2018, 8, 10, https://doi.org/10.3390/nano8100830.
  • [45] Peters R. J. B., van Bemmel G., Herrera-Rivera Z., Helsper H. P. F. G., Marvin H. J. P., Weigel S., Tromp P. C., Oomen A. G., Bouwmeester, H., Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles, „Journal of Agricultural and Food Chemistry” 2014, 62, 27, 6285–6293, https://doi.org/10.1021/jf5011885.
  • [46] Espitia P. J. P., Otoni C. G., Soares N. F. F., Zinc Oxide Nanoparticles for Food Packaging Applications, „Antimicrobial Food Packaging” 2016, 425–431, https://doi.org/10.1016/B978-0-12-800723-5.00034-6.
  • [47] Giannossa L. C., Longano D., Ditaranto N., Nitti M. A., Paladini F., Pollini,M., Rai M., Sannino A., Valentini A., Cioffi, N., Metal nanoantimicrobials for textile applications, „Nanotechnology Reviews” 2013, 2, 3, https://doi.org/10.1515/ntrev-2013-0004.
  • [48] Uddin M. J., Cesano F., Scarano D., Bonino F., Agostini G., Spoto G., Bordiga S., Zecchina, A., Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties, „Journal of Photochemistry and Photobiology A: Chemistry” 2008, 199, 1, 64–72, https://doi.org/10.1016/j.jphotochem.2008.05.004.
  • [49] El-Nahhal I. M., Zourab S. M., Kodeh F. S., Selmane M., Genois I., Babonneau F., Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications, „International Nano Letters” 2012, 2, https://doi.org/10.1186/2228-5326-2-14.
  • [50] Verbič A., Gorjanc M., Simončič B., Zinc Oxide for Functional Textile Coatings: Recent Advances, „Coatings” 2019, 9, 9, https://doi.org/10.3390/coatings9090550.
  • [51] Guerra F., Attia M., Whitehead D., Alexis F., Nanotechnology for Environmental Remediation: Materials and Applications, „Molecules” 2018, 23, 7, https://doi.org/10.3390/molecules23071760.
  • [52] Amde M., Liu, J. F., Tan Z. Q., Bekana D., Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection, Talanta 149, 2016, 341-346, https://doi.org/10.1016/j.talanta.2015.12.004.
  • [53] Gehrke I., Geiser A., Somborn-Schulz A., Innovations in nanotechnology for water treatment, Nanotechnology, Science and Applications 1, 2015, https://doi.org/10.2147/NSA.S43773.
  • [54] Beek W. J. E., Wienk M. M., Janseen R. A. J., Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer, Advanced Mater 16, 12, 2004, pp. 1009-1013, https://doi.org/10.1002/adma.200306659.
  • [55] Shweta, Pal K., Thapa K. B., Synthesis and characterization of ZnO nano-particles for solar cell application by the cost effective co-precipitation method without any surfactants, AIP Conference Proceedings 2142, 1, 2019, https://doi.org/10.1063/1.5122336.
  • [56] Yuan Z., Low-temperature growth of well-aligned ZnO nanowire arrays by chemical bath deposition for hybrid solar cell application, „Journal of Material Science: Material in Electronics” 2014, 25, 5, 2248–2252, https://doi.org/10.1007/s10854-014-1866-6.
  • [57] Yuan Z., Synthesis of ZnO nanocrystal by thermal decomposition for inverted polymer solar cell application, „Journal of Material Science: Material in Electronics” 2015, 26, 3, 1776–1779, https://doi.org/10.1007/s10854-014-2607-6.
  • [58] Chelladurai K., Rajamanickam M., Environmentally Benign Neem Biodiesel Synthesis Using Nano-Zn-Mg-Al Hydrotalcite as Solid Base Catalysts, „Journal of Catalysts” 2014, 1–6, https://doi.org/10.1155/2014/326575.
  • [59] Kumar R., Al-Dossary O., Kumar G., Umar A., Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review, „Nano-Micro Letters” 2014, 7, 2, 97–120, https://doi.org/10.1007/s40820-014-0023-3.
  • [60] Wang Z. L., Zinc oxide nanostructures: growth, properties and applications, „Journal of Physics. Condensed Matter” 2004, 16, 25, 829–858, https://doi.org/10.1088/0953-8984/16/25/R01.
  • [61] Moballegh A, Shahverdi H. R, Aghababazadeh R., Mirhabibi A., ZnO nanoparticles obtained by mechanochemical technique and the optical properties, „Surface Science” 2007, 601,13, 2850–2854, https://doi.org/10.1016/j.susc.2006.12.012.
  • [62] Bacaksiz E., Parlak M., Tomakin M., Özçelik A., Karakiz M., Altunbaş M., The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films, „Journal of Alloys Compounds” 2008, 466, 1-2, 447–450, https://doi.org/10.1016/j.jallcom.2007.11.061.
  • [63] Segets D., Gradl J., Taylor R. K., Vassilev V., Peukert W., Analysis of Optical Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility and Surface Energy, „ACS Nano” 2009, 3, 7, 1703–1710,https://doi.org/10.1021/nn900223b.
  • [64] Feng L., Liu A., Liu M., Ma Y., Wei J., Man B., Fabrication and characterization of tetrapod-like ZnO nanostructures prepared by catalyst-free thermal evaporation, „Materials Characterization” 2010, 61, 128–133, https://doi.org/10.1016/j.matchar.2009.10.011.
  • [65] Huang C. L., Hsiao I. L., Lin H. C., Wang C. F., Huang Y. J., Chuang C. Y., Silver nanoparticles affect on gene expres sion of inflammatory and neurodegenerative responses in mouse brain neural cells, „Environmental Research” 2015, 136, 253–263, https://doi.org/10.1016/j.envres.2014.11.006.
  • [66] Gupta R., Xie H., Nanoparticles in Daily Life: Applications, Toxicity and Regulations, „Journal of Environmental Pathology, Toxicology and Oncology ” 2018, 37, 3, 209–230, https://doi.org/10.1615/ JEnvironPatholToxicolOncol.2018026009.
  • [67] Taylor D. A., Dust in the wind, „Environmental Health Perspectives” 2002, 110, 2, A80–A87, https://doi.org/10.1289/ehp.110-a80.
  • [68] Jeevanandam, J., Barhoum A., Chan S., Dufresne A., Danquah M., Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, „Beilstein Journal of Nanotechnology” 2018, 9, 1, 1050–1074,https://doi.org/10.3762/bjnano.9.98.
  • [69] Delay M., Frimmel F. H., Nanoparticles in aquatic systems, „Analytical and Bioanalytical Chemistry” 2012, 402, 583–592, https://doi.org/10.1007/s00216-011-5443-z.
  • [70] Contini C., Schneemilch M., Gaisford S., Quirke N., Nanoparticle–membrane interactions, „Journal of Experimental Nanoscience” 2018, 13, 1, 62–81, https://doi.org/10.1080/17458080.2017.1413253.
  • [71] Manke A., Wang L., Rojanasakul Y., Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity, „Biomed Research International” 2013, 942916, https://doi.org/10.1155/2013/942916.
  • [72] Dayem A. A., Hossain M. K., Lee S. B., Kim K., Saha S. K., G. M., Choi H. Y., Cho S.G., The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles, „International Journal of Molecular Sciences” 2017, 18, 1, https://doi.org/10.3390/ijms18010120
  • [73] Siddiqi K. S., ur Rahman A., Tajuddin, Husen A., Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes, „Nanoscale Research Letters” 2018, 13, 1, https://doi.org/10.1186/s11671-018-2532-3.
  • [74] Wang L., Hu Ch., Shao L., The antimicrobial activity of nanoparticles: present situation and prospects for the future, „International Journal of Nanomedicine” 2017, 12, 1227–1249, https://doi.org/10.2147/IJN.S121956.
  • [75] Sirelkhatim A., Mahmud S., Seeni A., Kaus N. H. M., Ann L. Ch., Bakhori S. K. M., Hasan H., Mohamad D., Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, „Nanomicro Letters” 2015, 7, 3, 219–242, https://doi.org/10.1007/s40820-015-0040-x.
  • [76] Yang E.J., Kim S., Kim J.S., Choi I.H., Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles, „Biomaterials” 2012, 33, 6858–6867, https://doi.org/10.1016/j.biomaterials.2012.06.016.
  • [77] Zhang T., Wang L., Chen Q., Chen Ch., Cytotoxic Potential of Silver Nanoparticles, „Yonsei Medical Journal” 2014, 55, 2, 283–291, https://doi.org/10.3349/ymj.2014.55.2.283.
  • [78] Adams L. K., Lyon D. Y., Alvarez P. J. J. Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, „Water Research” 2006, 40, 3527–3532, https://doi.org/10.1016/j.watres.2006.08.004.
  • [79] Fiedot M., Maliszewska I., Rac-Rumijowska O., Suchorska-Woźniak P., Lewińska A., Teterycz H., The Relationship between the Mechanism of Zinc Oxide Crystallization and Its Antimicrobial Properties for the Surface Modification of Surgical Meshes, „Materials (Basel)” 2017, 10, 4https://doi.org/10.3390/ma10040353.
  • [80] Azam A., Ahmed A. S., Oves M., Khan M. S., Habib S. S., Memic A., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, „International Journal of Nanomedicine” 2012, 7, https://doi.org/10.2147/IJN.S35347.
  • [81] Niño-Martínez N., Orozco M. S. S., Martínez-Castañón G. A., Méndez F. T., Ruiz F., Molecular Mechanisms of Bacterial Resistance to Metal and Metal Oxide Nanoparticles, „International Journal of Molecular Sciences” 2019, 20, 11, https://doi.org/10.3390/ijms20112808.
  • [82] Ramesh C., Mohan Kumar K. T., Senthil M., Ragunathan V., Antibacterial activity of Cr2O3 nanoparticles against E.coli; Reduction of chromate ions by Arachis hypogaea leaves, „Archives of Applied Science Research” 2012, 4, 4, 1894–190.
  • [83] Bind V., Kumar A., Current issue on nanoparticle toxicity to aquatic organism, „MOJ Toxicology” 2019, 5, 2, 66–67.
  • [84] Pramod K. S., Vijayasundaram V., Krishnakumar N., Palaniappan Pl.Rm., The effect of titanium dioxide exposure on the thermal properties of Zebrafish (Danio rerio) bones, „Journal of Thermal Analysis and Calorimetry” 2012, 108, 1, 133–139, https://doi.org/10.1007/s10973-011-1774-4.
  • [85] Zhang J., Guo W., Li Q., Wang Z., Liu S., The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms, „Environmental Science: Nano” 2018, 5, 11, 2482–2499, https://doi.org/10.1039/C8EN00688A.
  • [86] Lacave J. M., Vicario-Parés U., Bilbao E., Gilliland D., Mura F., Dini L., Cajaraville M. P., Orbea A., Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels, „Science of The Total Environment” 2018, 642, 1209–1220, https://doi.org/10.1016/j. scitotenv.2018.06.128.
  • [87] Griffitt R. J., Luo J., Gao J., Bonzongo J. C., Barber D. S., Effects of particle composition anad species on toxicity of metallic nanomaterials in aquatic organisms, „Environmental Toxicology and Chemistry” 2008, 27, 9, https://doi.org/10.1897/08-002.1.
  • [88] Lekamge S., Miranda A. F., Abraham A., Li V., Shukla R., Bansal V., Nugegoda D., The Toxicity of Silver Nanoparticles (AgNPs) to Three Freshwater Invertebrates With Different Life Strategies: Hydra vulgaris, Daphnia carinata, and Paratya australiensis, „Frontiers in Environmental Science” 2018, 6, 1–13, https://doi.org/10.3389/fenvs.2018.00152.
  • [89] Zhang Z., Yang X., Shen M., Yin Y., Liu J., Sunlight-driven reduction of silver ion to silver nanoparticleby organic matter mitigates the acute toxicity of silver to Daphnia magna, „Journal of Environmental Sciences” 2015, 35, 62–68, https://doi.org/10.1016/j.jes.2015.03.007.
  • [90] Gosteva I., Morgalev Y., Morgaleva T., Morgalev S., Effect of Al2O3 and TiO2 nanoparticles on aquatic organisms, IOP Conference Series: Materials Science and Engineering 98, 2015, https://doi.org/10.1088/1757-899X/98/1/012007.
  • [91] Borase H. P., Muley A. B., Patil S. V., Singhal R. S., Nano-eco toxicity study of gold nanoparticles on less explored aquatic organism Moina macrocopa: enzymatic biomarkers and bioaccumulation perspective, „Environmental Toxicology and Pharmacology” 2019, 68, 4–12, https://doi.org/10.1016/j.etap.2019.02.013.
  • [92] Dabrunz A., Duester L., Prasse C., Seitz F., Rosenfeldt R., Schilde C., Schaumann G.E., Schulz R., Biological Surface Coating and Molting Inhibition as Mechanisms of TiO2 Nanoparticle Toxicity in Daphnia magna, PLoS ONE 6, 2011, https://doi.org/10.1371/journal.pone.0020112.
  • [93] Aruoja V., Pokhrel S., Sihtmäe M., Mortimer M., Mädler L., Kahru A., Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa, „Environmental Science Nano” 2015, 6, https://doi.org/10.1039/C5EN00057B.
  • [94] Heinlaan M., Ivask A., Blinova I., Dubourguier H.C., Kahru A., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, „Chemosphere” 2008, 71, 7, 1308–1316, https://doi.org/10.1016/j.chemosphere.2007.11.047.
  • [95] Aruoja V., Dubourguier H.C., Kasemets K., Kahru A., Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata, „Science of the Total Environment” 2009, 407, 4, https://doi.org/10.1016/j. scitotenv.2008.10.053.
  • [96] Sovová T., Kocí V., Kochánková L., Ecotoxicity of nano and bulk forms of metal oxides, Conference: 1st NANOCON International Conference, At: Rožnov p. Radhoštěm, Czech Republic, 2009.
  • [97] Mortimer M., Kasemets K., Kahru A., Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila, „Toxicology” 2009, 269, 2-3, 182–189, https://doi.org/10.1016/j.tox.2009.07.007.
  • [98] Kovrižnych J. S., Sotníková R., Zeljenková D., Rollerová E., Szabová E., Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio, „Interdisciplinary Toxicology” 2014, 7, 1, 23–26, https://doi.org/10.2478/intox-2014-0004.
  • [99] Lopes S., Ribeiro F., Wojnarowicz J., Łojkowski W., Jurkschat K., Crossley A., Soares A.M.V.M., Loureiro S., Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution, „Environmental Toxicology and Chemistry” 2014, 33, 190–198, https://doi.org/10.1002/etc.2413.
  • [100] Hartmann N.B., Von der Kammer F., Hofmann T., Baalousha M., Ottofuelling S., Baun A. Algal testing of titanium dioxide nanoparticles--testing considerations, inhibitory effects and modification of cadmium bioavailability, „Toxicology” 2010, 269, 2-3, 190-197, https://doi.org/10.1016/j.tox.2009.08.008.
  • [10] Dalai S., Pakrashi S., Chandrasekaran N., Mukherjee A., Acute Toxicity of TiO2 Nanoparticles to Ceriodaphnia dubia under Visible Light and Dark Conditions in a Freshwater System, PLoS One 8, 4, 2013, https://doi.org/10.1371/journal.pone.0062970.
  • [102] Artells E., Issartel J., Auffan M., Borschneck D., Thill A., Tella M., Brousset L., Rose J., Bottero J.Y., Thiéry A., Exposure to Cerium Dioxide Nanoparticles Differently Affect Swimming Performance and Survival in Two Daphnid Species, PLoS One 8, 8, 2013, https://doi.org/10.1371/journal.pone.0071260.
  • [103] Pelletier D. A., Suresh A. K., Holton G. A., McKeown C. K., Wang W., Gu B., Mortensen N. P., Allison D. P., Joy D. C., Allison M. R., Brown S. D., Phelps T. J., Doktycz, M. J., Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability, „Applied and Environmental Microbiology” 2010,76, 24, 7981–7989, https://doi.org/10.1128/AEM.00650-10.
  • [104] Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Auffan M., Flank A. M., Cytotoxicity of CeO2 nanoparticles for Escherichia coli. physico-chemical insight of the cytotoxicity mechanism, „Environmental Science & Technology” 2006, 40, 6151–6156, https://doi.org/10.1021/es060999b.
  • [105] Rodea-Palomares I., Boltes K., Fernández-Piñas F., Leganés F., García-Calvo E., Santiago J., Rosal R., Physicochemical Characterization and Ecotoxicological Assessment of CeO2 Nanoparticles Using Two Aquatic Microorganisms, „Toxicological Sciences” 2011, 119, 1, 135–145, https://doi.org/10.1093/toxsci/kfq311.
  • [106] Rogers N. J., Franklin N. M., Apte S. A., Batley G. E., Angel B. M., Lead J. R., Baalousha M., Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater, „Environmental Chemistry” 2010, 7, 50–60, https://doi.org/10.1071/EN09123.
  • [107] Van Hoecke K., Quik J. T., Mankiewicz-Boczek J., De Schamphelaere K. A., Elsaesser A., Van der Meeren P., Barnes C., McKerr G., Howard C. V., Van de Meent D., Rydzyński K., Dawson K. A., Salvati A., Lesniak A., Lynch I., Silversmit G., De Samber B., Vincze L., Janssen C.R., Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests, „Environmental Science & Technology” 2009, 43, 12, 4537–4546, https://doi.org/10.1021/es9002444.
  • [108] Zhang H., He X., Zhang Z., Zhang P., Li Y., Ma Y., Kuang Y., Zhao Y., Chai Z., Nano-CeO2 exhibits adverse effects at environmental relevant concentrations, „Environmental Science & Technology” 2011, 45, 8, 3725–3730, https://doi.org/10.1021/es103309n.
  • [109] Garaud M., Auffan M., Devin S., Felten V., Pagnout Ch., Pain-Devin S., Proux O., Rodius F., Sohm B., Giamberini L., Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha, „Nanotoxicology” 2016, 10, 7, 935–944, https://doi.org/10.3109/17435390.2016.1146363.
  • [110] Conway J. R., Hanna S. K., Lenihan H. S., Keller A. A., Effects and implications of trophic transfer and accumulation of CeO2 nanoparticles in a marine mussel, „Environmental Science & Technology” 2014, 48, 1517–1524, https://doi.org/10.1021/es404549u.
  • [111] Johnston B. D., Scown T. M., Moger J., Cumberland S. A., Baalousha M., Linge K., vanAerle R., Jarvis K., Lead J. R., Tyler C. R. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish, „Environmental Science & Technology” 2010, 44, 1144–1151, https://doi.org/10.1021/es901971a.
  • [112] Stanley J. K., Coleman J. G., Weiss C. A. Jr, Steevens J. A., Sediment toxicity and bioaccumulation of nano and micron-sized aluminum oxide, „Environmental Toxicology and Chemistry” 2010, 29, 2, 422–429, https://doi.org/10.1002/etc.52.
  • [113] Minaeian S., Shahverdi A. R., Nohi A. S., Shahverdi H. R., Extracellular biosynthesis of silver nanoparticles by some bacteria, „JSIAU” 2008, 17, 66, 1–4.
  • [114] Das V. L., Thomas R., Varghese R. T., Soniya E. V., Mathew J., Radhakrishnan E. K., Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area, „3 Biotech” 2013, 4, 2, 121–126, https://doi.org/10.1007/s13205-013-0130-8.
  • [115] Joerger R., Klaus T., Granqvist C.G., Biologically produced silver-carbon composite materials for optically functional thin film coatings, „Advanced Materials” 2010, 12, 407–409, https://doi.org/10.1002/(SICI)- 1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O.
  • [116] Nair B., Pradeep T., Coalescence of nano-clusters and formation of submicron crystallites assisted by Lactobacillus strains, „Cryst Growth Design” 2002, 2, 293–298, https://doi.org/10.1021/cg0255164.
  • [117] Shahverdi A. R., Minaeian S., Shahverdi H. R., Jamalifar H., Nohi A. A., Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach, „Process Biochemistry” 2007, 42, 919–923, https://doi.org/10.1016/j.procbio.2007.02.005.
  • [118] Sinha S., Pan I., Chanda P., Sen S. K., Nanoparticles fabrication using ambient biological resources, „Journal of Applied Bioscienced 2009, 19, 1113–1130.
  • [119] Rather M. A., Bhat I. A., Sharma N., Sharma R., Molecular and Cellular Toxicology of Nanomaterials with Related to Aquatic Organisms, „Advances in Experimental Medicine and Biology” 2018, 1048, 263–284, https://doi.org/10.1007/978-3-319-72041-8_16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9d7e979-f8ed-46d2-a0ed-ff16c0751570
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.