PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gravity and electrostatic separation of unburned coal from a selected fly ash

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unburned coal grains make it difficult to use fly ash economically, which causes energy losses in the fuel. The article presents the possibilities of separating unburned coal from selected fly ash. In order to assess the possibility of separation of unburned carbon, the analysis of grain density and ash composition was used. Unburned coal was separated by four methods – one wet gravity and three dry methods. It has been found that despite very fine ash grains, the quality and quantity of separation products are significantly dependent on the separation method used and the separated grains’ qualitative characteristics. The analysis of the coal grains under an electron microscope has revealed that they contain mineral inclusions. Their presence enables selective separation of carbon without first grinding the middling grains. The most advantageous results of the separation of unburned coal were obtained by the electrostatic separation method. Separated coal can be used in high-value carbon applications.
Rocznik
Strony
33--40
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
  • Central Mining Institute, Department of Environmental Monitoring, Poland
  • Central Mining Institute, Department of Environmental Monitoring, Poland
  • Central Mining Institute, Department of Environmental Monitoring, Poland
  • Central Mining Institute, Department of Environmental Monitoring, Poland
Bibliografia
  • [1] Bahadori A, Vuthaluru HB. Estimation of potential savings from reducing unburned combustible losses in coal-fired systems. Appl Energy 2010 Dec 1;87(12):3792-9.
  • [2] Bartoňovà L. Unburned carbon from coal combustion ash: an overview, 134. Fuel Process Technol; 2015. p. 136-58. Elsevier B.V.
  • [3] Xing Y, Guo F, Xu M, Gui X, Li H, Li G, et al. Separation of unburned carbon from coal fly ash: a review, vol. 353. Powder Technology; 2019. p. 372-84. Elsevier B.V.
  • [4] Pacewska B, Wilińska I. Usage of supplementary cementitious materials: advantages and limitations Part I. C-S-H, C-A-S-H and other products formed in different binding mixtures. J Therm Anal Calorim, 142:371-393. https://doi.org/10.1007/s10973-020-09907-1.
  • [5] Nicoara AI, Stoica AE, Vrabec M, Rogan NŠ, Sturm S, Ow-Yang C, et al. End-of-Life materials used as supplementary cementitious materials in the concrete industry. Available from, www.mdpi.com/journal/materials.
  • [6] Dinarloo S, Hower J. Prediction of the unburned carbon content of fly ash in coal-fired power plants. Coal Combust Gasif Prod 2015;7(1):19-29. http://www.coalcgp-journal.org/papers/2015/CCGP-D-14-00009.1-Dindarloo.pdf.
  • [7] Hower JC, Groppo JG, Graham UM, Ward CR, Kostova IJ, Maroto-Valer MM, et al. Coal-derived unburned carbons in fly ash: a review. Int J Coal Geol 2017;179:11-27. Elsevier B.V.
  • [8] Cabielles M, Montes-Morán A, Garcia B. Structural study of graphite materials prepared by HTT of unburned carbon concentrates from coal combustion fly ashes. Energy Fuel 2008 Jan 10;22(2):1239-43.
  • [9] ASH Rubio FB, Izquierdo M, Mayoral C, Bona M, Martínez-Tarazona R, Luesma Castán M. Preparation and characterization of carbon-enriched coal. J Environ Manag 2008;88.
  • [10] Cabral-Pinto MMS, Inácio M, Neves O, Almeida AA, Pinto Edgar, Oliveiros B, et al. Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. 2020. p. 629-40. https://doi.org/10.1007/s12403-019-00323-x.12.
  • [11] Hower JC, Maroto-Valer MM, Taulbee DN, Sakulpitakphon T. Mercury capture by distinct fly ash carbon forms. Energy Fuel 2000 Jan 1;14(1):224-6. https://doi.org/10.1021/ef990192n [Internet].
  • [12] Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES. Mercury capture by native fly ash carbons in coal-fired power plants. Prog Energy Combust Sci 2010 Aug 1;36(4):510-29.
  • [13] Karayiğit A_I, Yiğitler Ő, _Is ̧erli S, Querol X, Mastalerz M, Oskay RG, et al. Mineralogy and geochemistry of feed coals and combustion residues from tunçbilek and seyitőmer coal-fired power plants in western Turkey. Coal Combust Gasif Prod 2019;11(18-31):438-56. https://ccgpjournal.org/article/12453-mineralogy-and-geochemistry-of-feed-coals-and-combustion-residues-from-tunbilek-and-seyitmer-coal-fired-power-plants-in-western-turkey.
  • [14] Kostova IJ, Hower JC, Mastalerz M, Vassilev SV. Mercury capture by selected Bulgarian fly ashes: influence of coal rank and fly ash carbon pore structure on capture efficiency. Appl Geochem 2011 Jan 1;26(1):18-27.
  • [15] Cabielles M, Rouzaud J-N, Garcia A B. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes. Energy Fuel 2008 Dec 12;23(2):942-50.
  • [16] Cameán I, Garcia AB. Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: performance as anodes in lithium-ion batteries. J Power Sources 2011 May 15;196(10):4816-20.
  • [17] Ghosh S, Singh Parihar V, Verma P, Shukla P. Microbial nanotechnology for bioremediation of industrial wastewater. 2020. https://doi.org/10.3389/fmicb.2020.590631.
  • [18] Kumar Yadav V, Hiraman Fulekar M. Ceramics advances in methods for recovery of ferrous, alumina, and silica nanoparticles from fly ash waste. www.mdpi.com/journal/ceramics.
  • [19] Badenhorst C, Santos C, Lázaro-Martínez J, Białecka B, Cruceru M, Guedes A, et al. Assessment of graphitized coal ash char concentrates as a potential synthetic graphite source. Minerals 2020;10:986. https://doi.org/10.3390/min10110986.
  • [20] Alam J, Kumar Yadav V, Yadav KK, Cabral-Pinto MM, Tavker N, Choudhary N, et al. Recent advances in methods for the recovery of carbon nanominerals and polyaromatic hydrocarbons from coal fly ash and their emerging applications. 2021. https://doi.org/10.3390/cryst11020088.
  • [21] Bartnová L, Juchelková D, Klika Z, Cech B. On unburned carbon in coal ash from various combustion units. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng 2011;5:280-3.
  • [22] Cao YJ, Li GS, Liu JT, Zhang HJ, Zhai X. Removal of unburned carbon from fly ash using a cyclonic-static microbubble flotation column. J South African Inst Min Metall 2012;112(10):891-6. http://www.scielo.org.za/scielo.php?script_sci_arttext&pid_S2225-62532012001000010&lng_en&nrm_iso&tlng_en.
  • [23] Gray ML, Champagne KJ, Soong Y, Killmeyer RP, Maroto-Valer MM, Andrésen JM, et al. Physical cleaning of high carbon fly ash. Fuel Process Technol 2002 Apr 20;76(1):11-21.
  • [24] Li G, Deng L, Liu J, Cao Y, Zhang H, Ran J. A new technique for removing unburned carbon from coal fly ash at an industrial scale. Int J Coal Prep Util 2015 Sep 3;35(5):273-9. https://doi.org/10.1080/19392699.2015.1008098.
  • [25] Mercedes Maroto-Valer MN, Taulbee D, Hower C. Novel separation of the differing forms of unburned carbon present in fly ash using density gradient centrifugation. Energy Fuel 1999 May 11;13(4):947-53.
  • [26] Sung H, Yoo K, Lee S. The removal of unburned carbon from fly ash by kerosene extraction. Geosystem Eng 2016 Mar 3;19(2):96-9. https://doi.org/10.1080/12269328.2015.1096841.
  • [27] Uçurum M, Toraman ÖY, Depci T, Yoğurtçuoğlu E. A study on characterization and use of flotation to separate unburned carbon in bottom ash from Çayirhan power plant. Energy Sour Part A Recover Util Environ Eff 2011 Jan 13;33(6):562-74. https://doi.org/10.1080/15567030903117638.
  • [28] Kim J-K, Cho H-C, Kim S-C. Removal of unburned carbon from coal fly ash using a pneumatic triboelectrostatic separator. J Environ Sci Heal Part A 2001 Sep 30;36(9):1709-24. https://doi.org/10.1081/ESE-100106253.
  • [29] Zhang R, Guo F, Xia Y, Tan J, Xing Y, Gui X. Recovering unburned carbon from gasification fly ash using saline water. Waste Manag 2019 Oct 1;98:29-36.
  • [30] Baltrus JP, Wells AW, Fauth DJ, Diehl JR, White CM. Characterization of carbon concentrates from coal-combustion fly ash. Energy Fuel 2001 Mar 1;15(2):455-62. https://doi.org/10.1021/ef000201o.
  • [31] Bartoňová L, Klika Z, Spears DA. Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs. Fuel 2007 Feb 1;86(3):455-63.
  • [32] Hurt RH, Davis KA, Yang NYC, Headley TJ, Mitchell GD. Residual carbon from pulverized-coal-fired boilers. 2. Morphology and physicochemical properties. Fuel 1995 Sep 1;74(9):1297-306.
  • [33] Külaots I, Hurt RH, Suuberg EM. Size distribution of unburned carbon in coal fly ash and its implications. Fuel 2004 Jan 1;83(2):223-30.
  • [34] ISO 11760. Classification of coals. 2018.
  • [35] EN 14899. Characterization of waste - sampling of waste materials - framework for the preparation and application of a Sampling Plan. 2005.
  • [36] ISO 1953. Hard coal d Size analysis by sieving. 2015.
  • [37] Styszko-Grochowiak K, Gołaś J, Jankowski H, Koziński S. Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content. Fuel 2004 Sep 1;83(13):1847-53.
  • [38] EN 196-2. Method of testing cement - Part 2: chemical analysis of cement. 2013.
  • [39] ISO 7936. Hard coal d determination and presentation of float and sink characteristics d general directions for apparatus and procedures. 1992.
  • [40] Yan W, Li J. Modeling of the unburned carbon in fly ash. Energy Power Eng 2009;1(2):90-3.
  • [41] Bhatt A, Priyadarshini S, Acharath Mohanakrishnan A, Abri A, Sattler M, Techapaphawit S. Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Constr Mater 2019 Dec 1;11:-00263.
  • [42] Wu FC, Wu PH, Tseng RL, Juang RS. Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption. J Environ Manag 2010 May 1;91(5):1097-102.
  • [43] Hurt RH, Gibbins JR. Residual carbon from pulverized coal fired boilers: 1. Size distribution and combustion reactivity. Fuel 1995 Apr 1;74(4):471-80.
  • [44] Ngu L, Wu H, Zhang D. Characterization of ash cenospheres in fly ash from Australian power stations. Energy Fuel 2007 Oct 3;21(6):3437-45.
  • [45] Fomenko - V, Anshits N N, Vasilieva N G, Mikhaylova O A, Rogovenko - S, Zhizhaev A M, et al. Characterization of fly ash cenospheres produced from the combustion of Ekibastuz coal. Energy Fuel 2015 Jul 15;29(8):5390-403.
  • [46] Harja M, Barbuta M, Rusu L, Apostolescu N. Utilization of coal fly ash from power plants I. Ash characterization. Environ Eng Manag J 2008;7:289-93.
  • [47] Badenhorst CJ, Wagner NJ, Valentim BRV, Viljoen KS, Santos AC, Guedes A. Separation of unburned carbon from coal conversion ash: development and assessment of a dry method. Coal Combust Gasif Prod 2019;11(1):89-96.
  • [48] Cempa M, Olszewski P, Wierzchowski K, Kucharski P, Białecka B. Ash from poultry manure incineration as a substitute for phosphorus fertiliser. Materials 2022 Apr 21;15(9):3023. https://doi.org/10.3390/ma15093023.
  • [49] Wierzchowski K, Białecka B, Calus Moszko J, Klupa A. Characterization of unburned carbon separated from power plant slag. Int J Environ Sci Technol 2020;17:2499-510. https://doi.org/10.1007/s13762-020-02655-7.
  • [50] Nowak P, Ł Uruski, Nabagło D, Franaszczuk S. Waloryzacja mechaniczna popiołów lotnych, XXV Międzynarodowa Konferencja “Popioły z energetyki”. http://unia-ups.pl/wp-content/uploads/2018/11/PGE_PaulinaNowa_Waloryzacja.pdf.
  • [51] Bieńkowski M. Zakład Separacji Popiołów Siekierki - doświadczenia po pierwszym roku funkcjonowania, XXVI Międzynarodowa Konferencja “Popioły z energetyki”. http://unia-ups.pl/wp-content/uploads/2019/11/Micha%C5%82Bie%C5%84kowski.pdf.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9d084b8-cc92-45b3-b4bf-e1288df5025e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.