Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper involves techniques for improving the quality indices of engineering devices or systems with non-uniform structure (e.g. arrays of sonar antenna arrays) with respect to performance reliability, transmission speed, resolving ability, and error protection, using novel designs based on combinatorial configurations such as classic cyclic difference sets and novel vector combinatorial configurations. These design techniques makes it possible to configure systems with fewer elements than at present, while maintaining or improving on the other operating characteristics of the system. Several factors are responsible for distinguish of the objects depending an implicit function of symmetry and non-symmetry interaction subject to the real space dimensionality. Considering the significance of circular symmetric field, while an asymmetric subfields of the field, further a better understanding of the role of geometric structure in the behaviour of system objects is developed. This study, therefore, aims to use the appropriate algebraic results and techniques for improving such quality indices as combinatorial varieties, precision, and resolving ability, using remarkable properties of circular symmetry and non-symmetry mutual penetration as an interconnection cyclic relationships, and interconvertible dimensionality models of optimal distributed systems. Paper contains some examples for the optimization relating to the optimal placement of structural elements in spatially or temporally distributed technological systems, to which these techniques can be applied, including applications to coded design of signals for communications and radar, positioning of elements in an antenna array, and development vector data coding design.
Czasopismo
Rocznik
Tom
Strony
27--32
Opis fizyczny
Bibliogr. 23 poz., tab., wykr., wz.
Twórcy
Bibliografia
- 1. Wigner Eugene P. 1967. Symmetries and reflections. Scientific Essays: Indiana University Press, Bloomington, p. 288.
- 2. Holovatyy A., Teslyuk V., Lobur M. 2014. Verilogams model of comb-drive sensing element of integrated capacitive microaccelerometer for behavioural level of computer aid design. ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL. 3(1), Pp.49-53.
- 3. Shapovalov Yu., Mandziy B., Bachyk D. 2013. Optimization of linear parametric circuits in the frequenvy domain. ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL. 2(4), Pp.73-77.
- 4. Hall M.Jr. 1967. Combinatorial Theory: Blaisell Publishing Company, p. 470.
- 5. Singer J. 1938. A theorem in finite projective geometry and some applications to number theory. Transactions of American Mathematical Society. 43(3).
- 6. Riznyk V.V. 1975. On a method of the optimum design of discrete systems. Electronics and Modeling: Naukova dumka. K., Pp.12-15. (in Russian).
- 7. Riznyk V.V. 1981. Ideal Ring Relationships and Possibilities for Their Practical Use. Soviet Automatic Control. Vol.14: Script a Publishing Company. US, Pp.73-76.
- 8. Riznyk V.V. 1989. Synthesis of the optimum combinatorial systems. Lviv: Higher School. Ukraine, p.165. (in Ukrainian).
- 9. Riznyk V.V. 1989. Combinatorial models of systems on numerical bundles. Kyiv: Іnstitute of Theoretic Physics AN URSR. Preprint ITF-89-47Р, 36. (in Ukrainian).
- 10. Riznyk V.V. 1998. Multi-dimensional Systems Based on Perfect Combinatorial Models // Multidimensional Systems: Problems and Solutions. London: IEE, Savoy Place, 5/1-5/4.
- 11. Riznyk V., Bandyrska O. 2008. Application of the gold ring bundles for innovative non-redundant radar or sonar systems // European Physical Journal. Special Topics. Vol.154, Pp.183- 186.
- 12. Riznyk V., Bandyrska O., Skrybaylo-Leskiv D. 2006. Application of the gold ring bundles for innovative non-redundant sonar systems// Archives of Acoustics.31(4) (Supplement), Pp.379-384.
- 13. Riznyk W. 2011. Application of the Golden Numerical Rings for Configure Acoustic Systems of Fine Resolution // Acta Physica Polonica A. Vol.119, Pp.1046 -1049.
- 14. Riznyk W., Jabłoński W., Boniewicz P. 1999. Design the optimum telecommunication signals based on the combinatorial configurations// Materials KST’99, tom D. Bydgoszcz. Poland, Pp.196-200. (in Polish).
- 15. Riznyk W., Boniewicz P. 1999. Problem of codes selection in optoelectronic devices //Materials KST’99, tom D. Bydgoszcz. Poland, Pp.299-304 (in Polish).
- 16. Riznyk W., Boniewicz P. 2001. Synthesis of optimized and manipulated in phase signals by Golden Numerical Rings//Materials KST’99, tom C. Bydgoszcz. Poland, Pp.351-355 (in Polish).
- 17. Riznyk V.V. 2014. Combinatorial optimization of systems using conjugated symmetrical and asymmetrical structures. Kyiv: Electrical and Technical Computer Systems. 13(89), p.40-45 (in Ukrainian).
- 18. Riznyk V.V. 2015. Multidimensional Systems Optimization Developed from Perfect Torus Groups//Int. Journal of Applied Mathematics and Informatics. Vol.9, Pp.50-54.
- 19. Riznyk V. 2012. Application of the Symmetrical and Non-symmetrical Models for Innovative Coded Design of Signals//Modern Problems of Radio Engineering Telecommunications and Computer Scienc. Proc. of the XI-th Int. Conf. TCSET’2012. Lviv. Ukraine, p.70.
- 20. Riznyk V. 2011. Advanced Engineering Based on the Perfect Combinatorial Configurations //Int. Journal of Engineering Technology and Advanced Engineering (IJETAE). 1(2), Pp.124-126.
- 21. Barker R. H. 1953. Group Synchronization of Binary Digital Systems. In: Communication Theory (W. Jackson, Ed.). Academic Press. New York, Pp.273-287.
- 22. Piterson W., Weldon E. 1976. Error-correcting codes. Moscow: Мir publ., p.593 (in Russian).
- 23. Pershikov V.I., Savinkov V.M. 1991. Explanatory dictionary on informatics. Moscow: Finance and Statistics, p. 543. (in Russian).
Uwagi
1. Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
2. W artykule żle ponumerowano pozycje bibliograficzne. Według numeracji w artykule są 22 pozycje, faktycznie 23 pozycje.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9cb1f68-4e19-4a9b-82ff-50d5c3612201