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Abstract: This paper involves techniques for 
improving the quality indices of engineering devices or 
systems with non-uniform structure (e.g. arrays of sonar 
antenna arrays) with respect to performance reliability, 
transmission speed, resolving ability, and error protection, 
using novel designs based on combinatorial 
configurations such as classic cyclic difference sets and 
novel vector combinatorial configurations. These design 
techniques makes it possible to configure systems with 
fewer elements than at present, while maintaining or 
improving on the other operating characteristics of the 
system. Several factors are responsible for distinguish of 
the objects depending an implicit function of symmetry 
and non-symmetry interaction subject to the real space 
dimensionality. Considering the significance of circular 
symmetric field, while an asymmetric subfields of the 
field, further a better understanding of the role of 
geometric structure in the behaviour of system objects is 
developed. This study, therefore, aims to use the 
appropriate algebraic results and techniques for improving 
such quality indices as combinatorial varieties, precision, 
and resolving ability, using remarkable properties of 
circular symmetry and non-symmetry mutual penetration 
as an interconnection cyclic relationships, and 
interconvertible dimensionality models of optimal 
distributed systems. Paper contains some examples for the 
optimization relating to the optimal placement of 
structural elements in spatially or temporally distributed 
technological systems, to which these techniques can be 
applied, including applications to coded design of signals 
for communications and radar, positioning of elements in 
an antenna array, and development vector data coding 
design. 

Key words: Ideal Ring Bundle, circular sequence, 
circular symmetry, model, optimal proportion, vector data 
coding, self-correcting, resolving ability. 

INTRODUCTION 

The latest advances in the modern theory of systems of 
certifying the existence of a direct link of circular 
symmetry and non-symmetry relationships with delivering 
the totality of philosophical, methodological, specifically-
scientific and applied problems, which allowed her to gain 
the status of theoretical foundation of system engineering 
in modern science. Particularly relevant emerging study of 

the physical laws of nature, what in their treatises paid 
attention even the ancient philosophers. Studies include the 
use of modern mathematical methods of optimization of 
systems that exist in the structural analysis, the theory of 
combinatorial configurations, analysis of finite groups and 
fields, algebraic number theory and coding. Two aspects of 
the matter the issue are examined useful in applications of 
symmetrical and non-symmetrical models: optimization of 
technology, and hypothetic unified “universal informative 
field of harmony” [1]. 

THE ANALYSIS OF RECENT RESEARCHES AND 
PUBLICATIONS 

In [2] developed Verilog Analog Mixed-Signal 
simulation (Verilog-AMS) model of the comp-drive 
sensing element of integrated capacitive micro- 
accelerometer. This model allows simulate the reaction of 
the sensing elements effected by the applied force of 
acceleration, changes of its comb-drive capacities, output 
voltages and currents for determining its constructive 
parameters and for analysis of mechanical module the 
integrated device, but precision are of very important 
indices for these models. Proposed in [3] method of 
adaptive data transmission in telecommunication access 
networks with a combine modulation types ensures the 
lowest possible bit error rate during data transmission at 
some ratio of signal power to noise power. General 
problem of systems optimization relates to finding the 
best placement of its structural elements and events. 
Research into underlying mathematical area involves the 
appropriate algebraic structures and modern 
combinatorial analysis [4], finite projective geometry [5], 
difference sets and finite groups in extensions of the 
Galois fields [4]. We’re seeing a remarkable progress in 
developing of innovative techniques in systems 
optimization and design combinatorial Sequencing 
Theory, namely the concept of Ideal Ring Bundles (IRB)s 
[6-16]. The concept of the IRBs can be used for finding 
optimal solutions for wide classes of technological 
problems. A new vision of the concept with point of view 
of the role of geometric circular symmetry and non-
symmetry mutual relation laws allows better understand 
the idea of “perfect” combinatorial constructions, and to 
apply this concept for multidimensional systems 
optimization [17-20]. 
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OBJECTIVES 

The objectives of the underlying concept are as 
research into the underlying mathematical principles 
relating to the optimal placement of structural elements in 
spatially or temporally distributed systems, including 
appropriate algebraic constructions based on cyclic 
groups. Development of the scientific basis for 
technologically optimum systems theory, and the 
generalization of these methods and results to the 
improvement and optimization of technological systems. 

THE MAIN RESULTS OF THE RESEARCH 

IRBs are cyclic sequences of positive integers which 
form perfect partitions of a finite interval [1,N] of 
integers. The sums of connected sub-sequences of an IRB 
enumerate the set of integers [1,N-1] exactly R-times[8]. 
Example: The IRB {1, 2, 6, 4} containing four elements 
allows an enumeration of all numbers from 1 to 12= 
1+2+6+4 exactly once (R=1). The chain ordered approach 
to the study of sequences and events is known to be of 
widespread applicability, and has been extremely 
effective when applied to the problem of finding the 
optimum ordered arrangement of structural elements in a 
sequence. Let us regard n-fold symmetric sequence as to 
an ability to reproduce the maximum number of 
combinatorial varieties in the sequence using two-part 
distribution. Clearly, the maximum number nN  of such 
variants in n-stage sequence is taken two connected sub-
sequences of the sequence: 

1 nNn                                 (1) 
The maximum number of variants N in ring ordered 

(closed loop) sequence divided of two connected 
subsequence is a number of ordered combinations of n 
elements taken 2 at a time as below  

 
            )1(  nnN                           (2) 

Comparing the equations (1) and (2), we see that the 
number N of ordered combinations for binary consecutive 
sub-sequences of close-loop topology is n as many the 
number Nn of combination in the non-closed topology, for 
the same sequence of n elements. 

To extract meaningful information from the 
underlying comparison let us apply to circular S-fold 
symmetry as a quantized planar field of two 
complementary completions of the symmetric field. 

Example: The 3-fold (S=3) circular symmetry 
combined with two complementary completions (Fig.1). 

                                  n = n1 + n 2 

Fig.1. The 3-fold circular symmetry (left) combined 
with two complementary completions. 

In general the order S of the circular symmetry may 
be chosen arbitrarily. The objectives of the proposed 
research and applications of circular symmetric and non-
symmetric relationships are improving such quality of 
information technology as precision, resolving ability, and 
a better understanding of the role of geometric structure in 
the behaviour of natural objects. Underlying models help 
to understand the evolutionary aspects of the role of 
geometric structure in the behaviour of natural and man-
made objects. In this reasoning, we precede from a visible 
geometric circular symmetry. 

A plane circular S-fold symmetry, is known can be 
depicted graphically as a set of S lines diverged from a 
central point O uniformly (to be equal in spacing angles). 
Regarding n1 and n2 of S lines as being complementary 
sets (S= n1 + n2), we require all angular distances between 
n1 lines enumerate the set of spacing angles [α m i n , 360º - 
α m i n ] exactly R1 times, while   between n2  - exactly R2 
times, we call this a Perfect Circular Relation (PCR). Our 
reasoning proceeds from the fact, that minimal and 
maximal angular distances relation initiated by S-fold 
circular symmetry to be of prime importance for finding 
the PCR origin (Fig.2) 

 
 
 
 
 
 
 
 

Fig. 2. The minimal- maximal relationship of spacing 
angles of a plane S –fold natural PCR origin 

Clearly the set of all N=n(n-1) angular distances 
[αmin, N·αmin] of S-fold PCR plane quantized field allows 
an enumeration of all integers [1, S–1]   exactly R-times 
(Fig. 2): 

RSN )1(                               (3) 
From equations (2) and (3) follows the integer 

relation, the PCR for 7 ≤ S ≤ 19, n1,2   R1,2 +2 are 
tabulated (Table 1): 

 1)1(





R
nnS                          (4) 

Table 1.  PCR for 7 ≤ S ≤ 19,  n1,2   R1,2 +2 
 

Here are some examples of the simplest PCR. The 
elementary is 3-fold (S=3) circular symmetry that splits 
into 1-fold (n 1 = 1,  R 1 =1),  and 2-fold (n2=2,  R 2 = 1) 
complementary asymmetries. The first of them 

№ S n1 R1 n2 R2 
1 7 3 1 4 2 
2 11 5 2 6 3 
3 13 9 6 4 1 
4 15 7 3 8 4 
5 19 9 4 10 5 

αmin=360o/S           αmax = N·αmin 
 O 
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enumerates the set {1} by quantization level α m i n = 360º,  
while the second {1, 2} by α m i n = 120º  exactly once. 
The 7-fold rotational symmetry (S=7) splits into 3-fold 
(n1=3) asymmetry, which allows an enumeration the set 
of all angular intervals [360 º/7,  6× 360º/ 7]  of n1=3, 
R1=1, and n2 =4, R2 =2 by quantization level 
α m i n = 360º/ 7,  et c. [ 13 ].  

From Table 1 we can see that PCR is two 
complementary asymmetries of even (n1), and odd (n2) 
orders, each of them allows an enumeration the set of all 
angular distances the precise numbers of fixed times. 

Optimal numerical circular proportion is cyclic 
relationship of positive integers, which form perfect 
partitions of a finite interval [1, N] of integers. The sums 
of connected numbers of a relationship enumerate the set 
of integer [1, N] exactly R-times. 

Let us regard a graphic vision of an optimal circular 
proportion as image segmentation, for example numerical 
circular proportion {1:3:2:7} based on 13-fold  PCR, n=4, 
R=1 (Fig.3) 
 
 
 
 
 
 
 
 
 

Fig 3. The {1:3:2:7} cyclic ratio segmentation 

Observing the {1:3:2:7} image segmentation (Fig.3), 
we can form complete set of integer harmonious two-
body cyclic proportions from 1:12 to 12:1 as follows: 
1:12, 2:11, 3:10, 4:9, 5:8, 6:7, 7:6, 8:5. 9:4, 10:3, 11:2, 
12:1. The numerical circular proportion {1:3:2:7} based 
on 13-fold PCR, n=4, R=1 provides the maximum number 
of harmonious two-body relationships with four (n=4) 
cross-sections. 

Next we regard a graphic vision of the circular 
proportion {1:1:2:3} based on 7-fold PCR, n=4, R=2 
(Fig.4)

 
Here is an example of complete set of harmonious 

two-body relationships from 1:6 to 6:1 obtained exactly 
twice (R=2) each of them over the {1:2:3:1} optimal 
cyclic segmentation. The cyclic relationship {1:2:3:1*} 
containing four (n=4) elements allows an enumeration of 
all numbers from 1 to 6 exactly twice (R=2): 1=1=1*, 

2=2=1*+1, 3=3=1+2, 4=3+1*=1*+1+2, 5=2+3=3+1*+1, 
6=1+2+3=2+3+1*. This property makes optimal cyclic 
relationships useful in application which need to partition 
sets with the smallest possible number of intersections 
exactly twice. Here we can see that underlying 
segmentation provide an ability to reproduce the 
maximum number of harmonious combinatorial varieties 
in the system using sequential parting technology. 

To discuss concept of Torus Cyclic Groups (TCG)s 
let us regard structural model of t-dimensional vector ring 
as ring n- sequence },...,,..,,{ 21 nint KKKKC   of t-stage 
sub-sequences (terms) ),...,,( 21 itiii kkkK   each of them to 
be completed with nonnegative integers (Fig.5). 

 
 
  
 
 

 
      
 

 
 

 
 
Optimal 2D vector circular proportion is a cyclic 

relationship of 2-tiple (t=2) integers (2D vectors) based 
on S-fold PCR, which form consecutive 2D partitions 
over 2D torus surface exactly R times of fixed 2D 
quantization level. Here is an example of cyclic 2D vector 
relationship based on 7-fold PRC {(0,1):(0,2):(1,1)} 
containing three (n=3) 2D vectors, which form complete 
set of  six (S-1=6) 2D vectors as lattice 23 covered torus 
surface exactly once (R=1), and all 2D vector-sums are 
taken modulo 2,3: 
(0,0)≡(0,1)+(0,2)(mod2,3),  
(0,1)=(0,1),  
(0,2)=(0,2), 
(1,0)≡(0,2)+(1,1)(mod2,3), 
(1,1)=(1,1), 
(1,2)≡(0,1)+(1,1)(mod2,3). 

Next we see cyclic 2D vector circular proportion 
{(0,2):(1,1):(1,1):(1,0)} containing four (n=4) 2D vectors,  
which form complete set of 2D vectors covered torus 
surface 23 exactly twice (R=2). 

The 7-fold PCR is common to optimal circular 
proportions {1:2:4}, {1:2:3:1},{(0,1):(0,2):(1,1)}, and 
{(0,2):(1,1):(1,1):(1,0)}. Clearly the set of these optimal 
proportions corresponds to set of IRBs as follows:   
{1:2:4}↔{1,2,4}, {1:2:3:1}↔{1,2,3,1}, 
{(0,1):(0,2):(1,1)}↔{(0,1),(0,2),(1,1)}, 
{(0,2):(1,1):(1,1):(1,0)} ↔{(0,2),(1,1),(1,1),(1,0)}. 

In this we have 1D IRB {1,2,4}, and {1,2,3,1} as 
well as 2D IRB {(0,1),(0,2),(1,1)}, and 
{(0,2),(1,1),(1,1),(1,0)}. Both pairs of the IRBs come 
from the 7-fold circular symmetry. Moreover, the 
underlying combinatorial configurations are 
interconvertible dimensionality models of optimal 
distributed systems. 

Regarding formula (4) with n = m1, and  n -1 = m2 we 
have equation: 

       1 
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  2  

 
       3 

Fig. 4. The {1:1:2:3} cyclic ratio segmentation 
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Fig.5. Schematic model of  t-dimensional  n-stage 
ring sequence. 
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)3mod,2(mod
  (1,2)  (1,0)(0,2)
  (1,1)  (0,1)(1,0)
     (0,0)  (0,2)(0,1)
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
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
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
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                    121 
R
mmS                            (5) 

Space coordinate grid m1  m2 forms a frame of two 
modular (close-loop) axes modulo m1 and modulo m2, 
respectively, over a surface of torus as an orthogonal  two 
modulo cyclic axes of the system being the product of two 
(t=2) circles. We call this two-dimensional Ideal Ring 
Bundle (2D IRB). 

Here is an example of  set completed from the 2D 
IRBs with m1=2, m2 =3, R=1, and takes four variants as 
follows: 

{(0,1),(0,2),(1,1)},   {(1,0),(1,1),(1,2)}, 
{(0,1),(0,2),(1,0)},  {(0,1),(0,2),(1,2)}                (6) 
To observe ring sequence {(1,0), (1,1), (1,2)} we can 

see the next circular vector sums to be consecutive terms 
in this sequence: 

 
So long as the terms (1,0), (1,1), (1,2) of 

the cyclic sequence themselves are two-dimensional 
vector sums also, the set of the modular vector sums 
(m1=2,m2=3) forms a set of nodal points of annular 
reference grid over 23 exactly once (R=1). 

To observe ring sequence {(0,1), (0,2), (1,0)} we can 
see the next circular vector sums to be consecutive terms 
in this sequence: 

  
    

 
 

 
So long as the terms (0,1), (0,2), (1,0) of the cyclic 

sequence themselves are two-dimensional vector sums 
also, the set of the modular vector sums (m1=2,m2=3) 
forms a set of nodal points of annular reference grid over 
23 exactly once (R=1). 

In much the same way can be formed sets of nodal 
points of reference grids for the rest 2D IRBs with m1=2, 
m2 =3, R=1. We call this torus cyclic group of 7-fold 
circular symmetry [18]. 

Here is an example of 3D IRB with n= 6, m1 =2, m2 
=3, m3 =5, and  R=1 which contains circular 6-stage  
sequence of 3-stage (t=3) sub-sequences },...,{ 61 KK : 
K1 (k11, k21, k31)= (0,2,3), K2 (k12, k22, k32) = (1,1,2), 
K3  (k13, k23, k33) = (0,2,2), K4   (k14, k24, k34) = (1,0,3),  
K5 (k15, k25, k35) = (1,1,1), K6 (k16, k26, k36) = (0,1,0). 
The set of all circular sums over the 6-stage sequence, 
taking 3-tuple (t=3) modulo (2, 3, 5) gives the next result: 
(0,0,1)  ((0,2,2) + (1,0,3) + (1,1,1)),  
(0,0,2)  ((1,1,2) + (0,2,2) + (1,0,3)), 
(0,0,3)  ((0,2,3) + (0,1,0)),  
(0,0,4)((0,2,2) + (1,0,3) + (1,1,1) + (0,1,0) + (0,2,3)),  
(1,2,4)  ((0,2,3)+(1,1,2)+(1,1,1)+(1,0,3)+(0,1,0)). 

So, the set of all  circular  vector-sums  of six  (n=6)  
consecutive 3D vectors of this ring sequence covers 
surface of torus 2 × 3 × 5  exactly once (R=1). 

Next, we regard the n-stage ring sequence KtD ={(k11, 
k12,…,,k1t), (k21,,k22,…k2t),... (ki1,ki2,…,kit),... 
(kn1,kn2,…,knt)}, where all terms in each modular vector-
sum to be consecutive t-stage sub-sequences as elements 
of the sequence. A modular vector-sum of consecutive 

terms in the ring sequence can have any of the n terms as 
its starting point, and can be of any length from 1 to n-1 
exactly R-times. 

Easy to see this verify of the next conditions:    

R
nnm

t

i
)1(

1


  ,   or   

R
nnm

t

i
)1(

1


 +1 

  (m1, m2,…, mt) =1 ,                (7) 

where: n, R , and m1, m2,…, mt are numerical parameters 
of  a  t-dimensional Ideal Ring Bundle (tD IRB) [8,10]. 

Remarkable combinatorial properties of 2D and 3D 
IRB can be used for improving the quality indices of optic 
or acoustic systems with non-uniform structure (e.g. 
overlapping masks utilizing the entire ultra-acoustic 
aperture) with respect to resolving ability due to avoid the 
interference of signal components of the same spatial 
frequency [11-13]. 

Characteristics of optimum cyclic IRB-code for some 
parameters of  7 ≤ Sn ≤ 103 diapason  is presented in 
Tabl.2. 

Table 2. Characteristic of optimum cyclic IRB code 
for 7 ≤ Sn ≤ 103 

Here n- number of terms in an IRB, Sn – code 
combinations length,  t2 – number of corrected errors, Cn- 
code size,  ∆- evaluated expression of autocorrelation  
function. The function calculates taking summation with 
respect to all items +1 and -1 after a full cycle set of step-
by-step shifts an IRB –sequence.  Clearly, the correcting 
ability of optimum cyclic IRB-code increase as length Sn 
of the code, and number t2 of corrected errors tends to 
25% in increasing this length non linearly, and sidelobe 
level ratio is better than Barker code [21]. 

IRBs are useful for high performance coded design of 
optimum discrete signals such as correcting cyclic codes 
[22], code of the better autocorrelation function than 
Barker code, and self-correcting monolithic codes [8]. 

Here is a set of two 2D IRBs -{(0,1),(0,2),(1,1)} and 
{(1,1),(1,0),(0,2),(1,1)}, which form complete set of 
cyclic 2D IRB code combinations (0,0), (0,1), (0,2), (1,0), 
(1,1), (1,2) over 2D ignorable array 23 covered torus 
surface exactly R-times. A developed view of the torus 
array 23 appears below: 

Optimum cyclic IRB code 
Parameters  Autocorrelation function 

n Sn 
 

t2 Cn +1 -1 ∆ 
 

|∆/Sn | 
 

4 7 1 14 3 4 -1 0,143 
5 11 2 22 5 6 -1 0,091 
6 11 2 22 5 6 -1 0,091 
7 15 3 30 7 8 -1 0,066 
8 15 3 30 7 8 -1 0,066 
9 19 4 28 9 10 -1 0,053 

10 19 4 28 9 10 -1 0,053 
…
… 

…
… 

…
… 

… 
… 

…
… 

…
… 

…
… 

… 
… 

49 99 24 198 49 50 -1 0,010 
50 99 24 198 49 50 -1 0,010 
51 103 25 206 51 52 -1 0,010 

)3m od,2( m od
  ( 0, 2)  ( 1, 0)( 1, 2)
  ( 0, 1)  ( 1, 1)( 1, 0)

     ( 0, 0)  ( 1, 2)( 1, 1)











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Note, each of these code combinations forms massive 

symbols “1” or “0”. We call this code a “Monolithic Ideal 
Ring Bundles” (MIRB) codes [8,10,19]. An example of 
2D Monolithic IRB code with five (n=5) cyclic binary 
digits is tabulated (Table 3) 

Table 3. 2D-ІRB Monolithic Code {(1,3), (1,1), 
(2,3), (0,3), (3,3)} 

This code forms complete set of cyclic 2D IRB code 
combinations (0,0), (0,1),…,(3,4) over 2D ignorable array 
45 covered torus surface exactly once (R=1). 

Code size of 2D MIRB coding system of five (n=5) 
binary digits coincides in number of cells in the array 45 
that is n(n-1) =20, and m1 = 4, m2 =5. 

To see table 3, we observe all code combinations of 
the 2D IRB Monolithic code exhaust a set of collected 
similar signals in the combinations.In the same way can 
be formed 3D Monolithic IRB code {(1,1,2),(0,2,2), 
(1,0,3),(1,1,1), (0,1,0), (0,2,3)} (Table 4) 

Table 4. 3D-ІRB Monolithic Code {(1,1,2),(0,2,2), 
(1,0,3),(1,1,1), (0,1,0), (0,2,3)} 

To see Table 4, we observe: 
3D vector (0,0,1) represented in cyclic binary digits  

as 011100, vector (0,0,2) as 111000, (0,0,3) as 100001, 
(0,0,4) as (01111) ……, finally vector (1,2,4) as 111101. 

Hence the 3D-ІRB Monolithic Code {(1,1,2),(0,2,2), 
(1,0,3),(1,1,1), (0,1,0), (0,2,3)}forms complete set of 
cyclic 3D IRB code combinations over 3D ignorable array 
2 35 covered torus surface exactly once (R=1). 

Code size of the coding system of six (n=6) binary 
digits coincides in number of cells in the array 2 35 
that is n(n-1) =30, and m1 = 2, m2 =3, m3=5. 

Underlying property makes MIRBs useful in 
applications to high performance coded design of signals 

for communications with respect to self-correcting, 
transmission speed, vector data information technology, 
and fetch protection [23].  

The S-fold PCR is common to one- , 2D and 3D 
models for technologically optimum distributed  
processes on sequentially ordered of structural elements 
and operations. 

The purpose of the study is to improve the quality 
indices of technology for accuracy, resolution and 
functionality by distributing of the minimal number of 
structural elements and interconnections of technological 
system in spatially or/and temporally distributed 
coordinates. The challenge is to find a method of the 
optimal placement of structural elements in technical 
systems with a limited number of elements and bonds, 
while maintaining or improving on resolving ability and 
the other significant operating characteristics of the 
system. 

Application profiting from the PCR concept are for 
example optimum vector (two- and three-dimensional) 
technology, vector data computing systems, and 
development high speed vector information technology. 

The Ideal Ring Bundles (IRBs) provide a new 
conceptual model of radio- and information technologies 
or systems based on symmetry laws [1].  
It is known that cardinality set of IRBs increases out 
many times in increasing order n of circular symmetry, 
e.g., tabled 1D IRBs of order 168 have 4676 distinct its 
variants [8]. The cardinality set of two- and three-
dimensional IRBs outnumber in part analogous to cyclic 
difference sets heavily, e.g., there are 360 distinct variants 
of 2D IRBs of order 7, and 180 3D ones [18], while  the 
existence of the perfect difference sets [4] for n =7 is 
unknown yet. 

Remarkable geometrical properties of real space-time 
based on perfect circular symmetry and non-symmetry 
reflected in the underlying models. These properties make 
useful in applications to high performance coded design 
of signals for communications and radar, positioning of 
elements in an antenna array and visual coding systems 
with respect to redundancy, signal reconstruction and low 
side lobe antenna design [11-13]. 

CONCLUSIONS 

1. Applications of the symmetrical and non-
symmetrical combinatorial configurations for 
optimization of technology, namely the concept of Perfect 
Circular Relation (PCR), can be used for finding optimal 
solutions of technological problems in systems 
engineering. 

2. The behavior of a self-locked quantum PRC 
system with parameters n, R is in step with S-fold circular 
symmetry.  

3. Proposed code design based on the combinatorial 
configurations make it possible for reading a signal in 
signal/noise ratio under 1. 

4. Application profiting from concept of PCR are 
for example vector data coding, self -correcting codes and 
problems of high-resolution interferometry for radar, data 
communications, and signal design. 

(1,0) (1,1) (1,2) 
(0,0) (0,1) (0,2) 

Cyclic binary digits     
   Vector (1,3) (1,1) (2,3) (0,3) (3,3) 

(0,0) 1 1 1 1 0 
(0,1) 1 0 0 0 1 
(0,2) 1 1 1 0 0 
(0,3) 0 0 0 1 0 
(0,4) 1 0 0 1 1 

…….. 
…….. 

……
……. 

……
……. 

……
……. 

……
……. 

……
……. 

(3,4) 0 1 1 0 0 

Binary digits 
(1,1,2) (0,2,2) (1,0,3) (1,1,1) (0,1,0) (0,2,3) 

0 1 1 1 0 0 
1 1 1 0 0 0 
1 0 0 0 0 1 
0 1 1 1 1 1 

…….. 
…….. 

…….. 
…….. 

…….. 
…….. 

…….. 
…….. 

…….. 
…….. 

…….. 
…….. 

1 1 1 1 0 1 
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