PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of data transfer quality in the multi-scale uncoupled concurrent model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza numeryczna wpływu jakości transferu danych na wyniki modelowania we współbieżnym modelu wieloskalowym
Języki publikacji
EN
Abstrakty
EN
The main goal of this paper is an analysis of a quality of obtained results from a multiscale, concurrent modeling based on combination of macro and micro finite element models. Particular attention is put on an influence of different number of data transfer nodes between micro and macro scales on a material behavior predicted by a micro model. Results in form of equivalent strain distribution, homogenized stress-strain curves and samples shape changes are presented and discussed.
PL
Celem pracy jest określenie jakości uzyskanych wyników podczas stosowania współbieżnego modelu wieloskalowego, bazującego na kombinacji modeli elementów skończonych w skali makro i mikro. Szczególną uwagę poświęcono wpływowi zróżnicowanej ilości węzłów przekazujących dane między skalami mikro i makro na zachowanie się materiału w skali mikro. Wyniki przedstawiono w formie rozkładu odkształceń, krzywej płynięcia materiału i zmian w kształtach próbek w skali mikro.
Wydawca
Rocznik
Strony
415--424
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow
Bibliografia
  • Baxter, G.W., Behringer, R.P., 1991, Cellular automata models for the flow of granular materials, Physica D: Nonlinear Phenomena, 51,1-3, 465-471.
  • Brands, D., Schroder, J., Balzani, D., 2011, Statistically similar reconstruction of dual-phase steel microstructures for engineering applications, Conf. Proc. Computer Methods in Mechanics, (CD).
  • Chakraborty, A., Rahman, S., 2009, A parametric study on probabilistic fracture of functionally graded composites by a concurrent multiscale method, Probabilistic Engineering Mechanics, 24, 438-451.
  • Coelho, P.G., Fernandes, P.R., Rodrigues, H.C., 2011, Multiscale modeling of bone tissue with surface and permeability control, Journal of Biomechanics, 44, 321-239.
  • Da, S., Palmiere, E.J., Howard, I.C., 2002, CAFE: a tool for modeling thermomechanical processes. Proc. Thermo-mech. Processing: Mechanics, Microstructure & Control, eds, Palmiere, E.J., Mahfouf M., Pinna C, Sheffield, 296-301.
  • Danielsson, M., Parks, D.M., Boyce, M.C., 2007, Micromechanics, macromechanics and constitutive modeling of the elasto-viscoplastic deformation of rubber-toughened glassy polymers, Journal of the Mechanics and Physics of Solids, 55, 533-561.
  • Delannay, L., Doghri, I., Pierard, O., 2007, Prediction of tension-compression cycles in multiphase steel using a modified incremental meanfield model, International Journal of Solids and Structures, 44, 7291-7306.
  • Devincre, B., Kubin, L., 2010, Scale transitions in crystal plasticity by dislocation dynamics simulations, Comptes Rendus Physique, 11, 274-284.
  • Farrugia, D., Cheong, B., 2009, Multi-scale modelling for studying ductile damage of free cutting steel, SIMULIA Customer Conference (CD).
  • Flores, E.I.S., Murugan, M.S., Friswell, M.I., de Souza, E.A., 2011, Multi-scale constitutive model for a wood-inspired composite, Procedia Engineerig, 10, 3616-3621.
  • Gitman, I.M., Askes, H., Sluys, L.J., 2007, Representative volume: existence and size determination, Engineering Facture Mechanics, 74, 2518-2534.
  • Goik, D., Sieniek, M., Paszyński, M., Madej, L., 2013, Employing an adaptive projection-based interpolation to prepare discontinuous 3D material data for finite element analysis, Procedia Computer Science, 18, 1535-1544.
  • Gurgul, P., Sieniek, M., Paszyński, M., Madej, L., 2013a, Three-dimensional hp-adaptive algorithm for continuous approximations of material data using space projection, Computer Methods in Materials Science, 13, 2, 245-250.
  • Gurgul, P., Sieniek, M., Paszyński, M., Madej, L., Collier, N., 2013b, Two-dimensional HP-adaptive algorithm for continuous approximations of material data using space projection, Computer Science Journal, 14, 1, 111-112.
  • Hashin, Z., 1983, Analysis of composite materials - a survey, Journal of Applied Mechanics, 50, 481-505.
  • El Houdaigui, F., Forest, S., Gourgues, A.-F., Jeulin, D., 2006, Representative volume element sizes for copper bulk polycrystals and thin layers, Conf. Proc. Colloque 3M Materiaux, Mecanique, Microstructures, sur le theme Interfaces: de I'atome au polycristal, CEA Saclay, INSTN, 141-153.
  • Ivanov, D., Ivanov, S., Lomov, S., Verpoest, I., 2009, Strain mapping analysis of textile composites, Optic and Lasers in Engineering, 47, 360-370.
  • Kilian, R., Heilbronner, R., Stunitz, H., 2011, Quartz micro-structures and crystallographic preferred orientation: Which shear sense do they indicate?, Journal of Structural Geology, 1446-1466.
  • Larsson, F., Runesson, K., Saroukhani, S., Vafadari, R., 2011, Computational homogenization based on a weak format of micro-periodicity for RVE-problems, Computer Methods in Applied Mechanics and Engineering, 200, 11-26.
  • Liu, C, 2004, On the minimum size of representative volume element (RVE). Materials Science & Technology Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA.
  • Madej, L., Szyndler, J., Pasternak, K., Przenzak, M., Rauch L., 201 la, Tools for generation of digital material representations, Conf. Proc. MS&T2011, Columbus, Ohio, CD.
  • Madej, L., 2010, Development of the modelling strategy for the strain localization simulation based on the Digital Material Representation, AGH University of Science and Technology Press, Krakow.
  • Madej, L., Rauch, L., Yang, C, 2009, Strain distribution analysis based on the digital material representation, Archives of Metallurgy and Materials, 54, 499-507.
  • Madej, L., Kruzel, F., Cybulka, P., Perzyński, K., Banas, K., 2012, Generation of dedicated finite element meshes for multiscale applications with delaunay triangulation and adaptive finite element - cellular automata algorithms, Computer Methods in Material Science, 12, 2, 85-96.
  • Madej L., Rauch L., Perzyński K., Cybulka P., 2011b, Digital Material Representation as an efficient tool for strain inhomogeneities analysis at the micro scale level, Archives of Civil and Mechanical Engineering, 11, 661-679.
  • Mieche, C, 2003, Computational micro-to-macro transitions for discretized micro-structures of heterogenous materials at finite strains based on the minimization of averaged incremental energy, Computer Methods in Applied Mechanics and Engineering, 192, 559-591.
  • Piezel, B., Mercatoris, B.C.N., Trabelsi, W., Laiarinandrasana, L., Thionnet, A., Massart, T.J., 2012, Bending effect on the risk for delamination at the reinforcement/matrix interface of 3D woven fabric composite using a shell-like RVE, Composite Structures, 94, 2343-2357.
  • Rauch, L., Pernach, M., Bzowski, K., Pietrzyk, M., 2011, On application of shape coefficients to creation of the statistically similar representative element of DP steels, Computer Methods in Material Science, 11, 331-341.
  • Rozaiiski, A., Lydzba, D., 2011, From digital image of microstructure to the size of representative volume element: B4C/A1 composite, Studia Geotechnica et Mechanica, 33, 55-68.
  • Senkov, O.N., Miracle, D.B., Firstov, S.A., 2004, Metalic Materials with High Structural Efficiency, NATO Science Series - Mathematics, Physics and Chemistry, 146.
  • Sieniek, M., Gurgul, P., Skotniczny, M., Magiera, K., Paszynski, M., 2011, Agent-oriented image processing with the hp-adaptive projection-based interpolation operator, Procedia Computer Science, 4, 1844-1853.
  • Simonovski, I., Cizelj, L., 2007, Representative volume element size of a polycrystalline aggregate with embedded Short
  • Crack, Conf. Proc. International Conference Nuclear Energy for New Europe 2007, Portoro'z, Slovenia, 0906.1-0906.8.
  • Szyndler, J., Madej, L., 2014, Effect of number of grains and boundary conditions on digital material representation deformation under plane strain, Archives of Civil and Mechanical Engineering, in press.
  • Uchic, M.D., Holzer, L., Inkson, B.J., Principe, E.L., Munroe, P., 2007, Three-dimensional microstructural characterization using focused ion beam tomography, MRS Bulletin, 32,408-416.
  • Uchic, M.D., Groeber, M.A., Dimiduk, D.M., Simmons, J.P., 2006, Viewpoint Paper 3D microstructural characterization of nickel super alloys via serial-sectioning using a dual beam FIB-SEM, Scripta Materialia, 55, 23-28.
  • Wen, B., Zabaras, N., 2012, A multiscale approach for model reduction of random microstructures, Computational Materials Science, 63, 269-285.
  • Xue, Y., Bode, B., Briickner-Foit, A., 2010, Micromechanical simulation for texture induced uncertainty in fatigue damage incubation using crystal plasticity model, Procedia Engineering, 2, 1787-1793.
  • Yazzie, K.E., Williams, J.J., Phillips, N.C., De Carlo, F., Chawla, N., 2012, Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography, Materials Characterization, 70, 33-41.
  • Zeman, J., Sejnoha, M, 2007, From random microstructures to representative volume elements, Modeling and Simulation in Materials Science and Engineering, 15, 325-335.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9c9eb43-53a6-4bb1-bd6b-471a32d53d5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.