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Abstract  

For laminated rectangular plates and cylindrical shells the analytical, closed form solution is found using 

classical and first order transverse shear formulations of kinematical hypothesis. The analysis is carried out  
for a specific boundary conditions dealing with two opposite edges being simply supported. The evaluated 

method of solution can be treated as the benchmark for numerical analysis since analytical results can be 

obtained directly with the use of the symbolic packages, such as Mathematica, Maple or Matlab. 
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1. Introduction  

The divergence and flutter of thin plates and shells in subsonic or supersonic gas flows 

belong to the group of problems directly connected with the instability phenomena. 

These phenomena are an important and significant problem encountered in the design of 

aircraft constructions [1, 2] or turbine blades [3]. Divergence/flutter is thus a major 

concern for the designers regarding both the safety and costs. In the divergence/flutter 

analysis the attention is mainly focused on the discussion of different problems that can 

affect the structural behaviour, i.e. the aerodynamic theories, the form of boundary 

conditions, the structural geometry (the analysis deals mainly with 2D beam, plate and 

shell structures), the material properties and the effects of aerothermoelastic coupling. 

The historical background of the above class of dynamic instability problems is 

discussed by Muc, Flis [4]. A broad literature review dealing with divergence/flutter 

problems and their optimal design is presented by Muc, Flis, Augustyn [5] and we do not 

intend to repeat it herein. The flutter/divergence problems are described by the 

characteristics showing the distributions of frequencies versus aerodynamic pressures for 

different modes of vibrations. For composite structures the characteristics are mainly 

derived with the use of the finite element method (Ansys, Abaqus, NisaII/Aero). More 

information about numerical analysis can be found in Ref. [6].  

The aim of the present paper is to demonstrate the method of the analytical solutions 

of supersonic flutter problems for multilayered composite flat plates and cylindrical 

shells described with the use of classical plate/shell (CP/ST) and the first order 

transverse shear deformation (FSDT) theories. The analytical solutions can be carried 

out for structures having two opposite edges simply-supported with the aid of the 

symbolic packages (Mathematica, Maple, Matlab). 
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2. Governing relations  

Let us consider composite multilayered structures where the fluid flows along the x axis 

– Fig. 1 (y axis is along the length of panels/plates, x axis – width and z axis is along the 

thickness of panels/plates). For FSDT, using the linear piston theory and neglecting the 

effects of friction (the aerodynamic pressure acting on a curved surface area 

∆𝑝 = −𝛬 ∂w ∂x⁄ ) the governing set of differential equations can be represented as 

follows:  

𝐿𝑖𝑗𝑠𝑗 = 𝐹𝑖𝑗𝑠𝑖  , where      𝑠𝑖 = [𝑢, 𝑣, 𝜓1, 𝜓2, 𝑤], 𝑖, 𝑗 = 1,2, … ,5. (1) 

The details of the derivation of the relations (1) from the Hamilton principle are 

shown in Ref. [6]. The explicit form of the linear differential operators 𝐿𝑖𝑗 , 𝐹𝑖𝑗 is given in 

the Appendix A. 𝑡 denotes time,  is the shell thickness, 𝑅 is the radius of the cylindrical 

shell, and 𝑢 – the longitudinal (𝑥) displacements, 𝑣 – the circumferential (𝑦) 

displacements and 𝑤 – the normal (radial 𝑧) displacements,  𝜓1, 𝜓2  are rotations of the 

normal with respect to the shell midsurface, 𝛬 denotes the aerodynamic pressure and 𝜌 is 

the density of the composite material.  

 
Figure 1. Geometry of shallow cylindrical panels 

Assuming that: 

𝜓1 = −
𝜕𝑤

𝜕𝑥
  (𝜀xz = 0),  𝜓2 =

𝑣

𝑅
−

𝜕𝑤

𝜕𝑦
  (𝜀yz = 0). (2) 

The system of differential equations (1) is reduced to three equations with three 

unknown functions 𝑢, 𝑣, 𝑤. If the radius 𝑅 tends to the infinity five relations (1) describe 

the deformations of the flat plates. However, the first two equations (𝑢, 𝑣 unknown 

functions) are separated from the last three (𝑤, 𝜓1, 𝜓2). Since the linear piston theory is 

employed herein, the longitudinal effects associated with 𝑢 and 𝑣 variables can be 

neglected so that finally for plates the governing system of equations (1) is reduced to 
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three for three unknown functions (𝑤, 𝜓1, 𝜓2). Then, using equations (2) for CPT, the 

fundamental relation is reduced to one differential equation for the normal displacement 

 𝑤. Assuming that 𝐹11 = 𝐹22 = 𝐹33 = 𝐹44 = 0, it is well-known that the system of 

equations (1) can be reduced to one linear differential equation for one unknown 

function 𝑤 both for FSDT and CST. However, the order of equations is different – see 

Table 1.  

Table 1. Order of differential equation 

 Cylindrical shells Flat plates 

Order of differential equation (K)  

for the unknown function w 

FSDT CST FSDT CPT 

10 8 6 4 

It is necessary to emphasize that the relations shown in the Appendix A are written 

for a specific form of laminates corresponding to the elimination of the terms  

𝐴16 = 𝐴26 = 𝐷16 = 𝐷26 = 𝐵𝑖𝑗 = 0. The validity of such an assumption is discussed by 

Muc [7]. 

3. Solution of boundary value problem  

Let us assume the shell structures are simply supported along the edges 𝑥 = 0 and  
𝑥 = 𝐿𝑥 (Fig.1). The method of solution is discussed by Muc [8] and it can be easily 

applied in the problems dealing with local theories. The components of the midsurface 

deformations are approximated by the functions: 

    𝑠𝑖 = [𝑢, 𝑣, 𝜓1, 𝜓2, 𝑤] = [𝐴cos(𝛼𝑚𝑥) , 𝐵 sin(𝛼𝑚𝑥) , 𝐶 cos(𝛼𝑚𝑥) , 𝐺 sin(𝛼𝑚𝑥), 
𝐻sin(𝛼𝑚𝑥)] exp[𝑟𝑦] sin(𝜔𝑡) , 𝛼𝑚 = 𝑚𝜋/𝐿𝑥. 

(3) 

The solution of the equation (1) can be found with the use of the Cramer’s rule. Let 

us insert the approximated solution (3) and then consider the system of the four 

equations that can be written as: 

[𝐿]4𝑥4 [

𝑢1

𝑢2

𝜓1

𝜓2

] = − [

𝐿15𝑢3

𝐿25𝑢3

𝐿35𝑢3

𝐿45𝑢3

]. (4) 

Let us treat Eq. (4) as the system of linear algebraic equations with unknowns in the 

form of the vector [𝑢1, 𝑢2, 𝜓1, 𝜓2]
𝑇. The solution of the system (4) can be represented as: 

𝑥𝑖 =
det(𝐿𝑖)

det(𝐿)
, (5) 

where 𝐿𝑖 is the matrix formed by replacing the i-th column of the matrix L by the column 

vector of the right hand side of Eq. (4). Inserting the results (Eq. (5)) in the fifth row of 

Eq. (1) one can find that: 
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𝐿5𝑟
det(𝐿𝑟)

det(𝐿)
𝑢3 + 𝐿55𝑢3 = −𝜌ℎ𝑢̈3. (6) 

Finally Eq. (6) represents the polynomial relation for the unknown roots r: 

𝑟𝐾 + ∑ 𝑎𝑘𝑟
𝑘𝐾−1

𝑘=0 = 0.                                                  (7) 

The maximal order K of the algebraic equation is defined by the order of  the differential 

equations demonstrated in Table 1. The explicit form of the coefficients 𝑎𝑘 is presented 

for CPT in Ref. [6] (𝐾 = 4) and for CST in Ref. [8] (𝐾 = 8). The works of Abel (1826) 

and Galois (1832) have shown that the general polynomial equations of degree higher 

than the fourth cannot be solved in radicals. As we noticed in Ref. [6], the numerical 

computations of the roots are not convenient. Therefore, now we propose to solve the 

algebraic equations (7) in an analytical closed form proposed by Kulkarni [9-12] – see 

Appendix B. 

Substituting the expressions (3) into the equations (5) results in the algebraic 

equations for unknown constants 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 and 𝐺𝑖. Finally, the ten linear equations 

describing the boundary conditions take the following form (it is presented for six not 

ten boundary conditions due to the lack of space): 

[𝛯]

[
 
 
 
 
 
𝐻1

𝐻2

𝐻3

𝐻4

𝐻5

𝐻6]
 
 
 
 
 

=

[
 
 
 
 
 
 

1 1 1 1 1 1
𝑏𝑐1(𝑟1, 𝑦 = 0) 𝑏𝑐1(𝑟2, 𝑦 = 0) . . . .

𝑏𝑐2(𝑟1, 𝑦 = 0) 𝑏𝑐2(𝑟2, 𝑦 = 0) . . . .

𝑒𝑟1𝐿𝑦 𝑒𝑟2𝐿𝑦 𝑒𝑟3𝐿𝑦 𝑒𝑟4𝐿𝑦 𝑒𝑟5𝐿𝑦 𝑒𝑟6𝐿𝑦

𝑏𝑐1(𝑟1, 𝑦 = 𝐿𝑦) 𝑏𝑐1(𝑟2, 𝑦 = 𝐿𝑦) . . . .

𝑏𝑐2(𝑟1, 𝑦 = 𝐿𝑦) 𝑏𝑐2(𝑟2, 𝑦 = 𝐿𝑦) . . . . ]
 
 
 
 
 
 

[
 
 
 
 
 
𝐻1

𝐻2

𝐻3

𝐻4

𝐻5

𝐻6]
 
 
 
 
 

. (8) 

The first and the fourth row of the matrix [𝛯] demonstrate the explicit form of the 

boundary conditions 𝑤 = 0 at the edges. The solution of the boundary value problem (8) 

exists if the determinant:  

det[𝛯] = 0. (9) 

Let us note that for CPT the matrix Ξ has the dimension 4x4 since two boundary 

conditions are required at each of the edges only. 

Using the procedures described above the aerodynamic characteristics representing 

the variations of the frequencies 𝜔2 with the aerodynamic pressures 𝛬 can be drawn. The 

flutter phenomenon occurs for two coalescent modes 𝑛1 and 𝑛2 – see Figure 2.  
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Figure 2. Variations of frequency vs. aerodynamic pressure for different modes 

4. Results 

The mechanical properties of the unidirectional layers used in computations are 

presented in Table 2.  

Table 2. Properties of the unidirectional layer for carbon fibres 

𝐸1 [GPa] 𝐸2 [GPa] 𝐺12 = 𝐺13 = 𝐺23 [GPa] 𝜈12 𝜌 [kg/m3] 

138 8.28 6.29 0.33 1600 

 

 
Figure 3. Flutter characteristics for plates and cylindrical panels (Lx / Ly = 1)  
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The dimensionless critical pressures 𝛬̄ and frequencies 𝜅̄ are introduced in the following 

way: 

𝛬̅ = 𝛬
𝐿𝑥
3

𝐷11(𝜃 = 00)
 , 𝜅̅ =

𝜌ℎ𝐿𝑥
4

𝐷11(𝜃 = 00)
𝜔2. 

(10) 

The thickness-to-the length (ℎ 𝐿𝑥⁄ ) ratio is assumed to be equal to 0.1 and fibres are 

oriented at 𝜃 = 900. The numerical results are drawn in Figure 3. The dimensionless 

frequencies of modes 1 and 3 approach to each other and then merge into a same one 

after the flutter occurs. In general, the plot shows the identical results: the frequencies 

are lower for FSDT in comparison with the results for classical plate theory. The similar 

effects are observed for critical aerodynamic pressures. 

5. Conclusions 

In the present paper the method of the analytical solutions of supersonic flutter problems 

for multilayered composite flat plates and cylindrical shells are studied using classical 

plate/shell (CP/ST) and the first order transverse shear deformation (FSDT) theories. The 

analytical methods can be adopted for a specific boundary conditions - structures with 

two opposite simply-supported edges. The results show that frequencies and 

aerodynamic pressure are lower for FSDT. The evaluated method of solution can be 

treated as the benchmark for numerical analysis since analytical results can be obtained 

directly with the use of the symbolic packages, such as Mathematica, Maple or Matlab. 
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Appendices  

A. Form of differential operators 

 
𝐿11

= 𝐴11

∂2

∂𝑥2
+ 𝐴66

∂2

∂𝑦2
 ,

 
      𝐿12

= (𝐴12 + 𝐴66)
𝜕2

𝜕𝑦𝜕𝑥
 , 

𝐿15 = 𝐴12

1

𝑅

∂

𝜕𝑥
 ,

 
𝐿22

= 𝐴66

𝜕2

𝜕𝑥2
+ 𝐴22

∂2

∂𝑦2
− 𝐴̅55

1

𝑅2
 , 

𝐿24 = 𝐴̅55

1

𝑅
 , 𝐿25 = (𝐴12 + 𝐴̅55)

1

𝑅

∂

𝜕𝑥
 , 

𝐿33 = 𝐷11

∂2

∂𝑥2
+ 𝐷66

∂2

∂𝑦2
− 𝐴̅55 , 𝐿35 = −𝐴̅55

∂

𝜕𝑥
 , 

𝐿44 = 𝐷66

∂2

∂𝑥2
+ 𝐷22

∂2

∂𝑦2
− 𝐴̅55 , 𝐿55 = 𝐴̅55

∂2

∂𝑥2
− 𝐴22

1

𝑅2
 , 

𝐿51 = −𝐿15 , 𝐿52 = −𝐿25 , 𝐿53 = −𝐿35 , 

𝐿13 = 𝐿14 = 𝐿23 = 𝐿32 = 𝐿34 = 𝐿45 = 𝐿54 = 0 

𝐹11 = 𝐹22 = 𝜌ℎ
∂2

∂𝑡2
 , 𝐹33 = 𝐹44 =

𝜌ℎ3

12

∂2

∂𝑡2
 , 

𝐹55 = 𝐹11 − 𝛬
∂𝑤

∂𝑥
 , 𝐹𝑖𝑗 = 0, 𝑖, 𝑗 = 1,… ,5, 𝑖 ≠ 𝑗  

B. Analytical form of the solutions of characteristic equations 

The 5𝑡ℎ order polynomial principal equation [9]: 

𝑥5 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 

Letting 𝑥 = 𝑢 + 𝑓 in above equation we obtain: 

(𝑢 + 𝑓)5 + 𝑎(𝑢 + 𝑓)2 + 𝑏(𝑢 + 𝑓) + 𝑐 = 0 

Further expanding and rearranging gives a form: 

𝑢5 + 5𝑓𝑢4 + 10𝑓2𝑢3 + (10𝑓3 + 𝑎)𝑢2 + (5𝑓4 + 2𝑎𝑓 + 𝑏)𝑢 + 𝑓5 + 𝑎𝑓2 + 𝑏𝑓 + 𝑐 = 0 

Inserting a root, −𝑔, into 5𝑡ℎorder equation and rearranging it in descending powers of 𝑢 

results in a 6𝑡ℎ order equation: 
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𝑢6 + (5𝑓 + 𝑔)𝑢5 + (10𝑓2 + 5𝑓𝑔)𝑢4 + (10𝑓3 + 𝑎 + 10𝑓2𝑔)𝑢3

+ [5𝑓4 + 2𝑎𝑓 + 𝑏 + (10𝑓3 + 𝑎)𝑔]𝑢2

+ [𝑓5 + 𝑎𝑓2 + 𝑏𝑓 + 𝑐 + (5𝑓4 + 2𝑎𝑓 + 𝑏)𝑔]𝑢
+ (𝑓5 + 𝑎𝑓2 + 𝑏𝑓 + 𝑐)𝑔 = 0 

The 6𝑡ℎ order polynomial equation [10]:  

𝑥6 + 𝑎5𝑥
5 + 𝑎4𝑥

4 + 𝑎3𝑥
3+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 = 0 

the equivalent form:  

[𝑥3 + 𝑏2𝑥
2 + (𝑏1 − 𝑐1)𝑥 + 𝑏0 − 𝑐0][𝑥

3 + 𝑏2𝑥
2 + (𝑏1 + 𝑐1)𝑥 + 𝑏0 + 𝑐0] = 0 

where:  

2𝑏2 = 𝑎5 ,  𝑏2
2 + 2𝑏1 = 𝑎4 , 2(𝑏0 + 𝑏1𝑏2) = 𝑎3 ,  𝑏1

2 − 2𝑏0𝑏2 − 𝑐1
2 = 𝑎2 , 

2(𝑏0𝑏1 − 𝑐0𝑐1) = 𝑎1 ,  𝑏0
2 −  𝑐0

2 = 𝑎0 

The 8𝑡ℎ order polynomial equation [11]:  

𝑥8 + 𝑎7𝑥
7 + 𝑎6𝑥

6 + 𝑎5𝑥
5 + 𝑎4𝑥

4 + 𝑎3𝑥
3+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 = 0 

the equivalent form:  

{[(𝑥4 + 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0) − 𝑝(𝑥4 + 𝑐3𝑥
3 + 𝑐2𝑥

2 + 𝑐1𝑥 + 𝑐0)]/(1 − 𝑝)} 
{[(𝑥4 + 𝑏3𝑥

3 + 𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏0) + 𝑝(𝑥4 + 𝑐3𝑥

3 + 𝑐2𝑥
2 + 𝑐1𝑥 + 𝑐0)]/(1 + 𝑝)} = 0 

where:  
[2 (𝑏3 − 𝑐3𝑝

2) (1 − 𝑝2)⁄ ] = 𝑎7, {[(𝑏3
2 + 2𝑏2) − (𝑐3

2 + 2𝑐2)𝑝
2] (1 − 𝑝2)⁄ } = 𝑎6, 

{2 [(𝑏1 + 𝑏2𝑏3) − (𝑐1 + 𝑐2𝑐3)𝑝
2] (1 − 𝑝2)⁄ } = 𝑎5, 

{[(𝑏2
2 + 2𝑏0 + 2𝑏1𝑏3) − (𝑐2

2 + 2𝑐0 + 2𝑐1𝑐3)𝑝
2] (1 − 𝑝2)⁄ } = 𝑎4, 

{2 [(𝑏0𝑏3 + 𝑏1𝑏2) − (𝑐0𝑐3 + 𝑐1𝑐2)𝑝
2] (1 − 𝑝2)⁄ } = 𝑎3, 

{[(𝑏1
2 + 2𝑏0𝑏2) − (𝑐1

2 + 2𝑐0𝑐2)𝑝
2] (1 − 𝑝2)⁄ } = 𝑎2, 

[2(𝑏0𝑏1 − 𝑐0𝑐1𝑝
2) (1 − 𝑝2)⁄ ] = 𝑎1, [( 𝑏0

2 − 𝑐0
2𝑝2) (1 − 𝑝2)⁄ ] = 𝑎0 

 

 

The 10𝑡ℎ order polynomial equation [12]: 

𝑥10 + 𝑎8𝑥
9 + 𝑎7𝑥

8 + 𝑎6𝑥
7 + 𝑎5𝑥

6 + 𝑎4𝑥
5 + 𝑎3𝑥

4 + 𝑎2𝑥
3+ 𝑎1𝑥

2 + 𝑎0𝑥 = 0 

the equivalent form:  

[(𝑥5 + 𝑏4𝑥
4 + 𝑏3𝑥

3 + 𝑏2𝑥
2 + 𝑏1𝑥 + 𝑏0) − (𝑐4𝑥

4 + 𝑐3𝑥
3 + 𝑐2𝑥

2 + 𝑐1𝑥 + 𝑐0)] 
[(𝑥5 + 𝑏4𝑥

4 + 𝑏3𝑥
3 + 𝑏2𝑥

2 + 𝑏1𝑥 + 𝑏0) + (𝑐4𝑥
4 + 𝑐3𝑥

3 + 𝑐2𝑥
2 + 𝑐1𝑥 + 𝑐0)] = 0 

where: 

2𝑏4 = 𝑎8,  𝑏4
2 + 2𝑏3 − 𝑐4

2 = 𝑎7, 2(𝑏2 + 𝑏3𝑏4 − 𝑐3𝑐4) = 𝑎6,  
𝑏3

2 + 2𝑏1 + 2𝑏2𝑏4 − 𝑐3
2 − 2𝑐2𝑐4 = 𝑎5, 2(𝑏0 + 𝑏1𝑏4 + 𝑏2𝑏3 − 𝑐1𝑐4 − 𝑐2𝑐3) = 𝑎4, 

𝑏2
2 + 2𝑏0𝑏4 + 2𝑏1𝑏3 − 𝑐2

2 − 2𝑐0𝑐4 − 2𝑐1𝑐3 = 𝑎3,  
2(𝑏0𝑏3 + 𝑏1𝑏2 − 𝑐0𝑐3 − 𝑐1𝑐2) = 𝑎2 ,  𝑏1

2 + 2𝑏0𝑏2 − 𝑐1
2 − 2𝑐0𝑐2 = 𝑎1, 

2(𝑏0𝑏1 − 𝑐0𝑐1) = 𝑎0 ,  𝑏0
2 − 𝑐0

2 = 0  

 


