Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study discusses the urgent necessity of environmentally friendly remedies to tackle the increasing frequency of oil spills. Conventional remedial oil leak techniques, such as mechanical recovery and chemical dispersants, may cause environmental damage and suffer from low effectiveness. Organic absorbents are environment-friendly and low-cost substitutes; however, their acceptance is hampered by inadequate performance and optimisation studies. To close this gap, our work combines metaheuristic algorithms with ensemble machine learning and suggests a hybrid technique for the precise prediction and improvement of oil removal efficiency. Using Random Forest (RF) and XGBoost models, high R2 values (RF: 0.9517–0.9559; XGBoost: 0.9760), minimal errors, and strong generalisation were obtained by predictive modelling. Operating conditions were optimised using Grey Wolf Optimisation (GWO), showing an optimal percentage of oil removed (POR) of 93.59%. Combining metaheuristics with machine learning ensures accuracy and practical results, tackling the complexity of oil spill control. By concentrating on organic absorbents, the study fits with worldwide sustainability initiatives and provides a useful foundation for actual implementation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
141--155
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
autor
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
autor
- Faculty of Engineering, Dong Nai Technology University, Bien Hoa City, Viet Nam
autor
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
autor
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
autor
- Maritime College II, Ho Chi Minh City, Viet Nam
autor
- Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
Bibliografia
- 1. Grzelakowski A. International Maritime Transport Sector Regulation Systems and their Impact on World Shipping and Global Trade. TransNav, Int J Mar Navig Saf Sea Transp 2013;7:451–9. https://doi.org/10.12716/1001.07.03.18.
- 2. Nogue-Alguero B. Growth in the docks: ports, metabolic flows and socio-environmental impacts. Sustain Sci 2020;15:11–30. https://doi.org/10.1007/s11625-019-00764-y.
- 3. Nguyen VN, Chung N, Balaji GN, Rudzki K, Hoang AT. Internet of things-driven approach integrated with explainable machine learning models for ship fuel consumption prediction. Alexandria Eng J 2025;118:664–80. https://doi.org/10.1016/j.aej.2025.01.067.
- 4. Autsadee Y, Jeevan J, Bin Othman MR, Mohd Salleh NH Bin. Maritime Society 5.0: a global transition on human economy and civilisation for maritime sustainability. Aust J Marit Ocean Aff 2025;17:1–26. https://doi.org/10.1080/18366503.2023.2287872.
- 5. Xu M, Pan Q, Xia H, Masuda N. Estimating international trade status of countries from global liner shipping networks. R Soc Open Sci 2020;7:200386. https://doi.org/10.1098/rsos.200386.
- 6. Tidd AN, Vermard Y, Marchal P, Pinnegar J, Blanchard JL, Milner-Gulland EJ. Fishing for Space: Fine-Scale Multi-Sector Maritime Activities Influence Fisher Location Choice. PLoS One 2015;10:e0116335. https://doi.org/10.1371/journal.pone.0116335.
- 7. Albeldawi M. Environmental impacts and mitigation measures of offshore oil and gas activities. Dev. Pet. Sci. 2023; 313–52. https://doi.org/10.1016/B978-0-323-99285-5.00002-8.
- 8. Pham NDK, Dinh GH, Pham HT, Kozak J, Nguyen HP. Role of Green Logistics in the Construction of Sustainable Supply Chains. Polish Marit Res 2023;30:191–211. https://doi.org/10.2478/pomr-2023-0052.
- 9. Le TT, Nguyen HP, Rudzki K, Rowiński L, Bui VD, Truong TH. Management Strategy for Seaports Aspiring to Green Logistical Goals of IMO: Technology and Policy Solutions. Polish Marit Res 2023;30:165–87. https://doi.org/10.2478/pomr-2023-0031.
- 10. Nguyen VG, Rajamohan S, Rudzki K, Kozak J, Sharma P, Pham NDK. Using Artificial Neural Networks for Predicting Ship Fuel Consumption. Polish Marit Res 2023;30. https://doi.org/10.2478/pomr-2023-0020.
- 11. Toz AC. Modelling Oil Spill around Bay of Samsun, Turkey, with the Use of Oilmap and Adios Software Systems. Polish Marit Res 2017;24:115–25. https://doi.org/10.1515/pomr-2017-0096.
- 12. Nguyen PQP, Nguyen DT, Yen NHT, Le Q, Nguyen NT, Khoa Pham ND. Machine Learning-Driven Insights for Optimising Ship Fuel Consumption: Predictive Modelling and Operational Efficiency. Int J Adv Sci Eng Inf Technol 2025;15:27–35. https://doi.org/10.18517/ijaseit.15.1.12374.
- 13. Ansell DV, Dicks B, Guenette CC, Moller TH, Santner RS, White IC. A Review of the Problems Posed By Spills of Heavy Fuel Oils. Int Oil Spill Conf Proc 2001;2001:591–6. https://doi.org/10.7901/2169-3358-2001-1-591.
- 14. Hammoud B, Wehn N. Recent Advances in Oil-Spill Monitoring Using Drone-Based Radar Remote Sensing. In: Mancuso M, Abbas MHH, Bottari T, Abdelhafez AA, editors. Mar. Pollut. - Recent Dev., IntechOpen; 2023; 1–18. https://doi.org/10.5772/intechopen.106942.
- 15. Hoang AT, Nižetić S, Duong XQ, Rowinski L, Nguyen XP. Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. Chemosphere 2021;277. https://doi.org/10.1016/j.chemosphere.2021.130274.
- 16. Hoang AT, Nguyen XP, Duong XQ, Huynh TT. Sorbentbased devices for the removal of spilled oil from water: a review. Environ Sci Pollut Res 2021;28:28876–910. https://doi.org/10.1007/s11356-021-13775-z.
- 17. Chang SE, Stone J, Demes K, Piscitelli M. Consequences of oil spills: A review and framework for informing planning. Ecol Soc 2014. https://doi.org/10.5751/ES-06406-190226.
- 18. Hoang AT, Le VV, Al-Tawaha ARMS, Nguyen DN, Al-Tawaha ARMS, Noor MM. An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup. Pet Sci Technol 2018;36:361–70. https://doi.org/10.1080/10916466.2018.1425722.
- 19. Nichols JA, Moller TH. International Cooperation in Oil Spill Response. Int Oil Spill Conf Proc 1991;1991:61–4. https://doi.org/10.7901/2169-3358-1991-1-61.
- 20. Asif Z, Chen Z, An C, Dong J. Environmental Impacts and Challenges Associated with Oil Spills on Shorelines. J Mar Sci Eng 2022;10:762. https://doi.org/10.3390/jmse10060762.
- 21. Barid AJ, Hadiyanto H. Hyperparameter optimisation for hourly PM2.5 pollutant prediction. J Emerg Sci Eng 2024;2:e15. https://doi.org/10.61435/jese.2024.e15.
- 22. Dubey R, Guruviah V. Predictive Modelling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach. Arab J Sci Eng 2023;48:9329–38. https://doi.org/10.1007/s13369-022-07346-8.
- 23. Wu Y, Ke Y, Chen Z, Liang S, Zhao H, Hong H. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA 2020;187:104396. https://doi.org/10.1016/j.catena.2019.104396.
- 24. Banik R, Biswas A. Improving Solar PV Prediction Performance with RF-CatBoost Ensemble: A Robust and Complementary Approach. Renew Energy Focus 2023;46:207–21. https://doi.org/10.1016/j.ref.2023.06.009.
- 25. Wicaksono GW, Nur Oktaviana U, Noor Prasetyo S, Intana Sari T, Hidayah NP, Yunus NR. Classification of Industrial Relations Dispute Court Verdict Document with XGBoost and Bidirectional LSTM. JOIV Int J Informatics Vis 2023;7:1041. https://doi.org/10.30630/joiv.7.3-2.2373.
- 26. Yang J, Hu Y, Zhang J, Ma Y, Li Z, Jiang Z. Identification of marine oil spill pollution using hyperspectral combined with thermal infrared remote sensing. Front Mar Sci 2023;10:1135356. https://doi.org/10.3389/FMARS.2023.1135356/BIBTEX.
- 27. Wang M, Yang J, Liu S, Zhang J, Ma Y, Wan J. Quantitative Inversion Ability Analysis of Oil Film Thickness Using Bright Temperature Difference Based on Thermal Infrared Remote Sensing: A Ground-Based Simulation Experiment of Marine Oil Spill. Remote Sens 2023;15:1-18. https://doi.org/10.3390/RS15082018.
- 28. Burmakova A, Kalibatienė D. Applying Fuzzy Inference and Machine Learning Methods for Prediction with a Small Dataset: A Case Study for Predicting the Consequences of Oil Spills on a Ground Environment. Appl Sci 2022;12:8252. https://doi.org/10.3390/APP12168252.
- 29. Neelakandan S, Prakash M, Geetha BT, Nanda AK, Metwally AM, Santhamoorthy M. Metaheuristics with Deep Transfer Learning Enabled Detection and classification model for industrial waste management. Chemosphere 2022;308:136046. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136046.
- 30. Nassef AM, Fathy A, Abdelkareem MA, Olabi AG. Increasing bio-hydrogen production-based steam reforming ANFIS based model and metaheuristics. Eng Anal Bound Elem 2022;138:202–10. https://doi.org/10.1016/j.enganabound.2022.02.015.
- 31. Kusuma PD, Kallista M. Adaptive Cone Algorithm. Int J Adv Sci Eng Inf Technol 2023;13:1605–14. https://doi.org/10.18517/ijaseit.13.5.18284.
- 32. Kusuma PD, Hasibuan FC. Partial Leader Optimiser. Int J Adv Sci Eng Inf Technol 2023;13:1598–604. https://doi.org/10.18517/ijaseit.13.4.18217.
- 33. Kumar N, Amritphale SS, Matthews JC, Lynam JG. Oil spill cleanup using industrial and agricultural waste-based magnetic silica sorbent material: a green approach. Green Chem Lett Rev 2021;14:632–9. https://doi.org/10.1080/17518253.2021.1993349.
- 34. Chau MQ, Truong TT, Hoang AT, Le TH. Oil spill cleanup by raw cellulose-based absorbents: a green and sustainable approach. Energy Sources, Part A Recover Util Environ Eff 2025;47:8269–82. https://doi.org/10.1080/15567036.2021.1928798.
- 35. Hoang PH, Hoang AT, Chung NH, Dien LQ, Nguyen XP, Pham XD. The efficient lignocellulose-based sorbent for oil spill treatment from polyurethane and agricultural residue of Vietnam. Energy Sources, Part A Recover Util Environ Eff 2018;40:312–9. https://doi.org/10.1080/15567 036.2017.1415397.
- 36. Ariyanti D, Widiasa IN, Widiyanti M, Lesdantina D, Gao W. Agricultural waste-based magnetic biochar produced via hydrothermal route for petroleum spills adsorption. Int J Renew Energy Dev 2023;12:499–507. https://doi.org/10.14710/ijred.2023.52180.
- 37. Ganaie MA, Hu M, Malik AK, Tanveer M, Suganthan PN. Ensemble deep learning: A review. Eng Appl Artif Intell 2022;115:105151. https://doi.org/10.1016/j.engappai.2022.105151.
- 38. Yang Y, Lv H, Chen N. A Survey on ensemble learning under the era of deep learning. Artif Intell Rev 2023;56:5545–89. https://doi.org/10.1007/s10462-022-10283-5.
- 39. Ayulani ID, Yunawan AM, Prihutaminingsih T, Sarwinda D, Ardaneswari G, Handari BD. Tree-Based Ensemble Methods and Their Applications for Predicting Students’ Academic Performance. Int J Adv Sci Eng Inf Technol 2023;13:919–27. https://doi.org/10.18517/ijaseit.13.3.16880.
- 40. Syuhada N, Thani M, Mohd Ghazi R, Ismail N. Response surface methodology of optimisation of oil removal using banana peel as biosorbent. Malaysian J Anal Sci 2017;21:1101–10. https://doi.org/10.17576/mjas-2017-2105-12.
- 41. Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimiser. Adv Eng Softw 2014;69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- 42. Jangid P, Nagar V, Sharma A, Nagar S, Palwalia DK. Design a PID controller based on grey wolf optimisation algorithm for single-area load frequency control. J Emerg Sci Eng 2025;3:e36–e36. https://doi.org/10.61435/JESE.2025.E36.
- 43. Yab LY, Wahid N, Hamid AR. Inversed Control Parameter in Whale Optimisation Algorithm and Grey Wolf Optimiser for Wrapper-based Feature Selection: A comparative study. JOIV Int J Informatics Vis 2023;7:477. https://doi.org/10.30630/joiv.7.2.1509.
- 44. Liu Y, As’arry A, Hassan MK, Hairuddin AA, Mohamad H. Review of the grey wolf optimisation algorithm: variants and applications. Neural Comput Appl 2023;36:2713–35. https://doi.org/10.1007/S00521-023-09202-8.
- 45. Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Adv. Eng. Softw 2014;69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- 46. Faris H, Aljarah I, Al-Betar MA, Mirjalili S. Grey wolf optimiser: a review of recent variants and applications.Neural Comput Appl 2018;30:413–35. https://doi.org/10.1007/S00521-017-3272-5/METRICS.
- 47. Hatta NM, Zain AM, Sallehuddin R, Shayfull Z, Yusoff Y. Recent studies on optimisation method of Grey Wolf Optimiser (GWO): a review (2014–2017). Artif Intell Rev 2019;52:2651–83. https://doi.org/10.1007/S10462-018-9634-2/METRICS.
- 48. Samuel OD, Okwu MO, Oyejide OJ, Taghinezhad E, Afzal A, Kaveh M. Optimising biodiesel production from abundant waste oils through empirical method and grey wolf optimiser. Fuel 2020;281:118701. https://doi.org/10.1016/J.FUEL.2020.118701.
- 49. Rozam NF, Riasetiawan M. XGBoost Classifier for DDOS Attack Detection in Software Defined Network Using sFlow Protocol. Int J Adv Sci Eng Inf Technol 2023;13:718–25. https://doi.org/10.18517/ijaseit.13.2.17810.
- 50. Alshboul O, Shehadeh A, Almasabha G, Almuflih AS. Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction. Sustainability 2022;14:6651. https://doi.org/10.3390/su14116651.
- 51. Gao X, Ramli MI, Syed Zainal Ariffin SMZ. A Comparative Analysis of Combination of CNN-Based Models with Ensemble Learning on Imbalanced Data. JOIV Int J Informatics Vis 2024;8:456. https://doi.org/10.62527/joiv.8.1.2194.
- 52. Dong J, Chen Y, Yao B, Zhang X, Zeng N. A neural network boosting regression model based on XGBoost. Appl Soft Comput 2022;125:109067. https://doi.org/10.1016/j.asoc.2022.109067.
- 53. Phan QT, Wu YK, Phan QD, Tsai JSH. A Hybrid Wind Power Forecasting Model with XGBoost, Data Preprocessing Considering Different NWPs. Appl. Sci 2021;11:1100. https://doi.org/10.3390/APP11031100.
- 54. Zhang P, Jia Y, Shang Y. Research and application of XGBoost in imbalanced data. Int J Distrib Sens Networks 2022;18:155013292211069. https://doi.org/10.1177/15501329221106935.
- 55. Chen T, Guestrin C. XGBoost. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., New York, NY, USA: ACM; 2016;785–94. https://doi.org/10.1145/2939672.2939785.
- 56. Liu Y, Wang Y, Zhang J. New Machine Learning Algorithm: Random Forest. Inf. Comput. Appl., Springer, Berlin, Heidelberg; 2012, 246–52. https://doi.org/10.1007/978-3-642-34062-8_32.
- 57. Gnecco N, Terefe EM, Engelke S. Extremal Random Forests. J Am Stat Assoc 2024:1–24. https://doi.org/10.1080/01621459.2023.2300522.
- 58. Breiman L. Random Forests. Mach Learn 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.
- 59. Ignatenko V, Surkov A, Koltcov S. Random forests with parametric entropy-based information gains for classification and regression problems. Peer J Comput Sci 2024;10:e1775. https://doi.org/10.7717/PEERJ-CS.1775.
- 60. Schonlau M, Zou RY. The random forest algorithm for statistical learning. Stata J Promot Commun Stat Stata 2020;20:3–29. https://doi.org/10.1177/1536867X20909688.
- 61. Hu J, Szymczak S. A review on longitudinal data analysis with random forest. Brief Bioinform 2023;24:1–11. https://doi.org/10.1093/BIB/BBAD002.
- 62. Gholizadeh M, Jamei M, Ahmadianfar I, Pourrajab R. Prediction of nanofluids viscosity using random forest (RF) approach. Chemom Intell Lab Syst 2020;201:104010. https://doi.org/10.1016/J.CHEMOLAB.2020.104010.
- 63. Wickstrom K, Johnson JE, Lokse S, Camps-Valls G, Mikalsen KO, Kampffmeyer M. The Kernelized Taylor Diagram. In: Zouganeli E, Yazidi A, Mello G, Lind P, editors. Nord. Artif. Intell. Res. Dev., Springer Nature Switzerland AG 2022;125–31. https://doi.org/10.1007/978-3-031-17030-0_10.
- 64. Elvidge S, Angling MJ, Nava B. On the use of modified Taylor diagrams to compare ionospheric assimilation models. Radio Sci 2014;49:737–45. https://doi.org/10.1002/2014RS005435.
- 65. Bengnga A, Ishak R. Implementasi Seleksi Fitur Klasifikasi Waktu Kelulusan Mahasiswa Menggunakan Correlation Matrix with Heatmap. Jambura J Electr Electron Eng 2022;4:169–74. https://doi.org/10.37905/JJEEE.V4I2.14403.
- 66. Shin J, Yim I, Kwon S-B, Park S, Kim M, Cha Y. Evaluation of temperature effects on brake wear particles using clustered heatmaps. Environ Eng Res 2019;24:680–9. https://doi.org/10.4491/eer.2018.385.
- 67. Emerson JW, Green WA, Schloerke B, Crowley J, Cook D, Hofmann H. The Generalised Pairs Plot. J Comput Graph Stat 2013;22:79–91. https://doi.org/10.1080/10618600.2012.694762.
- 68. Gupta P, Bagchi A. Data Visualization with Python. Essentials Python Artif. Intell. Mach. Learn 2024;237–82. https://doi.org/10.1007/978-3-031-43725-0_7.
- 69. Aberasturi DT. Violin Plot. Wiley StatsRef Stat. Ref. Online, Wiley; 2023: 1–7. https://doi.org/10.1002/9781118445112. stat08426.
- 70. Molina E, Viale L, Vazquez P. How should we design violin plots? 2022 IEEE 4th Work. Vis. Guidel. Res. Des. Educ. IEEE 2022; 1–7. https://doi.org/10.1109/VisGuides57787.2022.00006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9c0cf89-4ec0-4e4a-9115-57c9ab03871c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.