PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ tworzyw sztucznych z odpadów przemysłowych poddanych obróbce powierzchniowej na właściwości mechaniczne kompozytu cementowego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Effect of surface treated industrial waste plastics on the mechanical properties of cement composite
Języki publikacji
PL EN
Abstrakty
PL
W pracy omówiono wyniki badań możliwości wykorzystania odpadów z polipropylenu (PP), polietylenu (PE) i poliamidu (PA), uzyskanych z zakładu przetwarzania odpadów, jako wzmocnienie zapraw. Jednym z głównych problemów związanych z wykorzystywaniem odpadów z tworzyw sztucznych w kompozytach cementowych jest hydrofobowość powierzchni tworzywa sztucznego, która uniemożliwia adhezję zaczynu cementowego. W badaniach zastosowano rozcieńczony roztwór izopropanolu do obróbki powierzchniowej tworzyw sztucznych. Przy projektowaniu mieszanin uwzględniono trzy zmienne; rodzaj tworzywa sztucznego (PP, PE, PA), ich dodatek oraz ich obróbkę powierzchniową. Przeprowadzono badania wytrzymałości na zginanie i ściskanie. 1,5% dodatek PP i PE zwiększył wytrzymałość na zginanie zaprawy, natomiast obróbka powierzchniowa nie wpłynęła na tę wytrzymałość. Wraz ze zwiększaniem dodatku tworzyw sztucznych zwiększała się energia pękania zapraw z tymi tworzywami. Dla stosunku objętościowego 1,5% zwiększeniu uległa energia pękania w odniesieniu do mieszaniny wzorcowej, przy czym największy wpływ miał odpad PP. W przypadku niepoddanych obróbce powierzchniowej odpadów stwierdzono znaczne zwiększenie energii pękania, przy równoczesnym zmniejszeniu wytrzymałości na ściskanie i energii pękania przy ściskaniu, jednak ten wpływ uległ zwiększeniu po obróbce powierzchniowej odpadów. Odpadowe tworzywa sztuczne mogą być stosowane w zaprawach lub w betonach, w celu poprawy ciągliwości i udarności. Równocześnie wykorzystanie tych odpadów eliminuje zanieczyszczenie środowiska.
EN
This study aims to investigate the feasibility of using industrial waste plastics, polypropylene (PP), polyethylene (PE) and polyamide (PA), obtained from recycling factory, as reinforcement for mortar. As one of the main problems of using waste plastics in cementitious composites is the hydrophobic properties of the surface of the plastics, because it prevents the formation of adequate interfacial adhesion with cement paste. Surface treatment of waste plastics was applied using diluted solution of isopropanol. Three parameters were considered when designing the mortar mixtures; type of waste plastic (PP, PE, PA), their addition ratio and surface treatment. Bending and compression tests were conducted. 1.5% volume addition of PP and PE to mortars the flexural strength was increased, however, surface treatment of waste plastics did not affected this strength. As the waste plastic volume ratio increased, the flexural toughness of mortars reinforced with PP, PE and PA plastics was also increased. For the 1.5% volume ratio, there was the increase of flexural toughness with respect to the reference mortar and the highest influence had the PP. For the untreated waste plastics, there was significant increase in flexural toughness, while reduction in the compressive strength and compressive toughness was found, however, this surface treatment enhanced the compressive strength and compressive toughness with respect to untreated plastics. Waste plastics can be used for mortars and concretes reinforcement to improve the ductility and energy absorption capacity while eliminating pollution and regaining them in the economy as a structural material.
Czasopismo
Rocznik
Strony
21--32
Opis fizyczny
Bibliogr. 39 poz., il., tab.
Twórcy
  • Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Kaynaklar, Izmir, Turkey
  • Dokuz Eylul University, Civil Engineering Department, Kaynaklar, Buca, Izmir, Turkey
Bibliografia
  • 1. R. Siddique, J. Khatib, I. Kaur, Use of recycled plastic in concrete: A review, Waste Management 28 (2008) 1835-1852.
  • 2. N. Saikia, J. de Brito, Use of plastic waste as aggregate in cement mortar and concrete preparation: A review, Construction and Building Materials 34 (2012) 385-401.
  • 3. L. Gu, T. Ozbakkaloglu, Use of recycled plastics in concrete: A critical review, Waste Management 51 (2016) 19-42.
  • 4. S. Yin, R. Tuladhar, F. Shi, M. Combe, T. Collister, N. Sivakugan, Use of macro plastic fibres in concrete: A review, Construction and Building Materials 93 (2015) 180-188.
  • 5. R. Sharma, P. P. Bansal, Use of different forms of waste plastic in concrete - a review, Journal of Cleaner Production 112 (1) (2015) 1-10.
  • 6. S. Mukhopadhyay, S. Khatana, A review on the use of fibers in reinforced cementitious concrete, Journal of Industrial Textiles 45(2) (2015) 239-264.
  • 7. Plastics Europe, Plastics-the Facts 2017. An Analysis of European Plastics Production, Demand and Waste Data. Access 10/5/2018. https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf
  • 8. L. Verdolotti, F. Iucolano, I. Capasso, M. Lavorgna, S. Iannace, B. Liguorib, Recycling and Recovery of PE-PP-PET-based Fiber Polymeric Wastes as Aggregate Replacement in Lightweight Mortar: Evaluation of Environmental Friendly Application, Environmental Progress & Sustainable Energy 33(4) (2014) 1445-1451.
  • 9. A. M. da Silva, J. de Brito, R. Veiga, Incorporation of fine plastic aggregates in rendering mortars, Construction and Building Materials 71 (2014) 226-236.
  • 10. B. Safi , M. Saidi, D. Aboutaleb, M. Maallem, The use of plastic waste as fine aggregate in the self-compacting mortars: Effect on physical and mechanical properties, Construction and Building Materials 43 (2013) 436-442.
  • 11. B.S. Al-Tulaian, M.J. Al-Shannag, A.R. Al-Hozaimy, Recycled plastic waste fibers for reinforcing Portland cement mortar, Construction and Building Materials 127 (2016) 102-110.
  • 12. J.-H. J. Kim, C.-G. Park, S.-W. Lee, S.-W. Lee, JP. Won, Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites, Composites: Part B 39 (2008) 442-450.
  • 13. J.-Y. Wang, K.-S. Chia, J.-Y. R. Liew, M.-H. Zhang, Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content, Cement & Concrete Composites 43 (2013) 39-47.
  • 14. A. Peled, H. Guttman, A. Bentur, Treatments of Polypropylene Fibres to Optimize their Reinforcing Efficiency in Cement Composites, Cement & Concrete Composites 14 (1992) 277-285.
  • 15. A. M. López-Buendía,1, M. D. Romero-Sánchez, V. Climent, C. Guillemb, Surface treated polypropylene (PP) fibres for reinforced concrete, Cement and Concrete Research 54 (2013) 29-35.
  • 16. P. Payrow, M. R. Nokken, D. Banu, D. Feldman, Effect of surface treatment on the post-peak residual strength and toughness of polypropylene/polyethylene-blended fiber-reinforced concrete, Journal of Composite Materials 45 (20) (2011) 2047-2054.
  • 17. M. Nili, A. Azarioon, A. Danesh, A. Deihimi, Experimental study and modeling of fiber volume effects on frost resistance of fiber reinforced concrete, Int J Civ Eng 16 (2018) 263-272 https://doi.org/10.1007/s40999-016-0122-2
  • 18. L. V. P. Meesaraganda, P. Saha, A. I. Laskar, Behaviour of Self-Compacting Reinforced Concrete Beams Strengthened with Hybrid Fiber Under Static and Cyclic Loading, Int J Civ Eng 16 (2018) 169–178 https://doi.org/10.1007/s40999-016-0114-2
  • 19. D. Foti, Preliminary analysis of concrete reinforced with waste bottles PET fibers, Construction And Building Materials, 25 (4) (2011) 1906-1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066
  • 20. L. Ferreira, J. Brito, N. Saikia, Influence of curing conditions on the mechanical performance of concrete containing recycled plastic aggregate, 36 (2012) 196-204 https://doi.org/10.1016/j.conbuildmat.2012.02.098
  • 21. R. B. Borg, O. Baldacchino, L. Ferrara, Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete, Constr. Build. Mat., 108 (2016) 29-47 https://doi.org/10.1016/j.conbuildmat.2016.01.029
  • 22. J. Thorneycroft, J. Orr, P. Savoikar, R.J. Ball, Performance of structural concrete with recycled plastic waste as a partial replacement for sand, Construction And Building Materials, 161 (2018) 63-69 https://doi.org/10.1016/j.conbuildmat.2017.11.127
  • 23. H. Mohammadhosseini, M.M. Tahir, A.R.M Sam, The feasibility of improving impact resistance and strength properties of sustainable concrete composites by adding waste metalized plastic fibres, Construction And Building Materials, 169 (2018) 223-236 https://doi.org/10.1016/j.conbuildmat.2018.02.210
  • 24. R. Siddique, T. R. Naik, Properties of concrete containing scrap-tire rubber - an overview, Waste Management, 24 (6) (2004) 563-569.
  • 25. T. B. Moghaddam, M.R. Karim, T. Syammaun, Dynamic properties of stone mastic asphalt mixtures containing waste plastic bottles, Construction And Building Materials 34 (2012) 236-242 https://doi.org/10.1016/j.conbuildmat.2012.02.054
  • 26. E. Ahmadinia, M. Zargar, M.R. Karim, A. Mahrez, A. Ebrahim, Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt, Construction And Building Materials 36 (2012) 984-989 https://doi.org/10.1016/j.conbuildmat.2012.06.015
  • 27. W. Cao, S. Liu, Z. Feng, Comparison of performance of stone matrix asphalt mixtures using basalt and limestone aggregates, Construction And Building Materials 41 (2013) 474-479.
  • 28. T.B. Moghaddam, M. Soltani, M.R. Karim, Experimental characterization of rutting performance of Polyethylene Terephthalate modified asphalt mixtures under static and dynamic loads, Construction And Building Materials 65 (2014) 487-494 https://doi.org/10.1016/j.conbuildmat.2014.05.006
  • 29. A. Modarres, H. Hamedi, Developing laboratory fatigue and resilient modulus models for modifi ed asphalt mixes with waste plastic bottles (PET), Construction And Building Materials 68 (2014) 259-267 https://doi.org/10.1016/j.conbuildmat.2014.06.054
  • 30. M. R. M. Hasan, B. Colbert, Z. You, A. Jamshidi, P.A. Heiden, M. O. Hamzah, A simple treatment of electronic-waste plastics to produce asphalt binder additives with improved properties, Construction And Building Materials, 110 (2016) 79-88 https://doi.org/10.1016/j.conbuildmat.2016.02.017
  • 31. M. Arabani, M. Pedram, Laboratory investigation of rutting and fatigue in glassphalt containing waste plastic bottles, Construction And Building Materials, 116 (2016) 378-383 https://doi.org/10.1016/j.conbuildmat.2016.04.105
  • 32. Z. Dehghan, A. Modarres, Evaluating the fatigue properties of hot mix asphalt reinforced by recycled PET fibers using 4-point bending test, Construction And Building Materials, 139 (2017) 384-393 https://doi.org/10.1016/j.conbuildmat.2017.02.082
  • 33. A. Ahmed, K. Ugai, T. Kamei, Investigation of recycled gypsum in conjunction with waste plastic trays for ground improvement, Construction And Building Materials, 25 (1) (2011) 208-217 https://doi.org/10.1016/j.conbuildmat.2010.06.036
  • 34. C.K. Subramaniaprasad, B.M. Abraham, E.K.K. Nambiar, Sorption characteristics of stabilised soil blocks embedded with waste plastic fibres, Construction And Building Materials, 63 (2014) 25-32 https://doi.org/10.1016/j.conbuildmat.2014.03.042.
  • 35. H. Soltani-Jigheh, Compressibility and Shearing Behavior of Clayey Soil Reinforced by Plastic Waste, International Journal Of Civil Engineering, 14 (7B) (2016) Pages: 479-489.
  • 36. ASTM D792-13, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, 2013.
  • 37. TURKISH STANDARD (TS) 802, Design of concrete mixes. Türk Standartları Enstitüsü, Ankara, 2009.
  • 38. ASTM C1609 / C1609M-10, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International, West Conshohocken, PA, 2010.
  • 39. ASTM C349-14, Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure), ASTM International, West Conshohocken, PA, 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9bfb796-d369-400b-a646-fbed2566df4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.