PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An unscented transformation approach to stochastic analysis of measurement uncertainty in magnet resonance imaging with applications in engineering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the frame of stochastic filtering for nonlinear (discrete-time) dynamic systems, the unscented transformation plays a vital role in predicting state information from one time step to another and correcting a priori knowledge of uncertain state estimates by available measured data corrupted by random noise. In contrast to linearization-based techniques, such as the extended Kalman filter, the use of an unscented transformation not only allows an approximation of a nonlinear process or measurement model in terms of a first-order Taylor series expansion at a single operating point, but it also leads to an enhanced quantification of the first two moments of a stochastic probability distribution by a large signal-like sampling of the state space at the so-called sigma points which are chosen in a deterministic manner. In this paper, a novel application of the unscented transformation technique is presented for the stochastic analysis of measurement uncertainty in magnet resonance imaging (MRI). A representative benchmark scenario from the field of velocimetry for engineering applications which is based on measured data gathered at an MRI scanner concludes this contribution.
Rocznik
Strony
73--83
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • Lab-STICC, ENSTA Bretagne, 2 rue François Verny, 29806 Brest, France
  • Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, D-18059 Rostock, Germany
  • Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, D-18059 Rostock, Germany
  • Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, D-18059 Rostock, Germany
  • Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, D-18059 Rostock, Germany
Bibliografia
  • [1] Bouboulis, P. (2010). Wirtinger’s calculus in general Hilbert spaces, arXiv:1005.5170.
  • [2] Bruschewski, M., Freudenhammer, D., Buchenberg, W.B., Schiffer, H.-P. and Grundmann, S. (2016). Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models, Experiments in Fluids 57(5): 83.
  • [3] Bruschewski, M., Kolkmann, H., John, K. and Grundmann, S. (2019). Phase-contrast single-point imaging with synchronized encoding: A more reliable technique for in vitro flow quantification, Magnetic Resonance in Medicine 81(5): 2937–2946.
  • [4] Datta, A., Kaur, A., Lauer, T. and Chabbouh, S. (2019). Exploiting multi-core and many-core parallelism for subspace clustering, International Journal of Applied Mathematics and Computer Science 29(1): 81–91, DOI: 10.2478/amcs-2019-0006.
  • [5] Elkins, C.J. and Alley, M.T. (2007). Magnetic resonance velocimetry: Applications of magnetic resonance imaging in the measurement of fluid motion, Experiments in Fluids 43(6): 823–858.
  • [6] Gentleman, W.M. (1968). Matrix multiplication and fast Fourier transforms, Bell System Technical Journal 47(6): 1099–1103.
  • [7] Holland, D.J., Malioutov, D.M., Blake, A., Sederman, A.J. and Gladden, L.F. (2010). Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing, Journal of Magnetic Resonance 203(2): 236–246.
  • [8] Hörmander, L. (1990). An Introduction to Complex Analysis in Several Variables, 3rd Edn, North-Holland, Amsterdam.
  • [9] John, K., Jahangir, S., Gawandalkar, U., Hogendoorn, W., Poelma, C., Grundmann, S. and Bruschewski, M. (2020a). Magnetic resonance velocimetry in high-speed turbulent flows: Sources of measurement errors and a new approach for higher accuracy, Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow 61(2): 27.
  • [10] John, K., Rauh, A., Bruschewski, M. and Grundmann, S. (2020b). Towards analyzing the influence of measurement errors in magnetic resonance imaging of fluid flows—Development of an interval-based iteration approach, Acta Cybernetica 24(3): 343–372.
  • [11] Julier, S., Uhlmann, J. and Durrant-Whyte, H. (2000). A new approach for the nonlinear transformation of means and covariances in filters and estimators, IEEE Transactions on Automatic Control 45(3): 477–482.
  • [12] Kostin, G.V., Saurin, V.V., Aschemann, H. and Rauh, A. (2014). Integrodifferential approaches to frequency analysis and control design for compressible fluid flow in a pipeline element, Mathematical and Computer Modelling of Dynamical Systems 20(5): 504–527.
  • [13] Măceş, D. and Stadtherr, M. (2013). Computing fuzzy trajectories for nonlinear dynamic systems, Computers & Chemical Engineering 52: 10–25.
  • [14] Niebergall, A., Zhang, S., Kunay, E., Keydana, G., Job, M., Uecker, M. and Frahm, J. (2013). Real-time MRI of speaking at a resolution of 33 ms: Undersampled radial FLASH with nonlinear inverse reconstruction, Magnetic Resonance in Medicine 69(2): 477–485.
  • [15] Piegat, A. and Dobryakova, L. (2020). A decomposition approach to type 2 interval arithmetic, International Journal of Applied Mathematics and Computer Science 30(1): 185–201, DOI: 10.34768/amcs-2020-0015.
  • [16] Proakis, J.G. and Manolakis, D.G. (1996). Digital Signal Processing: Principles, Algorithms, and Applications, 3rd Edn, Prentice-Hall, Upper Saddle River.
  • [17] Rao, K.R. and Yip, P.C. (2000). The Transform and Data Compression Handbook, CRC Press, Boca Raton.
  • [18] Rauh, A., Dittrich, C., Senkel, L. and Aschemann, H. (2011). Sensitivity analysis for the design of robust nonlinear control strategies for energy-efficient pressure boosting systems in water supply, Proceedings of the 20th International Symposium on Industrial Electronics, ISIE 2011, Gdańsk, Poland, pp.1353–1358.
  • [19] Rauh, A., John, K., Bruschewski, M. and Grundmann, S. (2020). Comparison of two different interval techniques for analyzing the influence of measurement uncertainty in compressed sensing for magnet resonance imaging, Proceedings of the 18th European Control Conference, ECC 2020, St. Petersburg, Russia, pp. 1865–1870.
  • [20] Tamir, J., Ong, F., Cheng, J., Uecker, M. and Lustig, M. (2016). Generalized magnetic resonance image reconstruction using the Berkeley Advanced Reconstruction Toolbox, ISMRM Workshop on Data Sampling and Image Reconstruction, Sedona, USA, http://wwwuser.gwdg.de/˜muecker1/sedona16-bart.pdf.
  • [21] Theilheimer, F. (1969). A matrix version of the fast Fourier transform, IEEE Transactions on Audio and Electroacoustics 17(2): 158–161.
  • [22] Uhlmann, J. (2021). First-hand: The unscented transform, https://ethw.org/First-Hand:The_Unscented_Transform.
  • [23] Weinmann, A. (1991). Uncertain Models and Robust Control, Springer, Vienna.
  • [24] Zhao, F. (2014). Methods for MRI RF Pulse Design and Image Reconstruction, PhD thesis, University of Michigan, Ann Arbor.
  • [25] Zhao, F., Noll, D., Nielsen, J.-F. and Fessler, J. (2012). Separate magnitude and phase regularization via compressed sensing, IEEE Transactions on Medical Imaging 31(9): 1713–1723.
  • [26] Zhou, B., Yang, Y.-F. and Hu, B.-X. (2020). A second-order TV-based coupling model and an ADMM algorithm for MR image reconstruction, International Journal of Applied Mathematics and Computer Science 30(1): 113–122, DOI: 10.34768/amcs-2020-0009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9bf5abb-d325-4ac4-b55d-e4206ed8b3c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.