PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of cooperative formation control for underactuated USVs based on nonlinear backstepping and cascade system theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a method for the cooperative formation control of a group of underactuated USVs. The problem of formation control is first converted to one of stabilisation control of the tracking errors of the follower USVs using system state transformation design. The followers must keep a fixed distance from the leader USV and a specific heading angle in order to maintain a certain type of formation. A global differential homeomorphism transformation is then designed to create a tracking error system for the follower USVs, in order to simplify the description of the control system. This makes the complex formation control system easy to analyse, and allows it to be decomposed into a cascaded system. In addition, several intermediate state variables and virtual control laws are designed based on nonlinear backstepping, and actual control algorithms for the follower USVs to control the surge force and yaw moment are presented. A global system that can ensure uniform asymptotic stability of the USVs’ cooperative formation control is achieved by combining Lyapunov stability theory and cascade system theory. Finally, several simulation experiments are carried out to verify the validity, stability and reliability of our cooperative formation control method.
Rocznik
Tom
Strony
149--162
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology) Ministry of Education Wuhan University of Technology Wuhan, No. 1178 Heping Avenue 430063 China
  • School of Transportation Wuhan University of Technology Wuhan, No. 1178 Heping Avenue, 430063 China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan, China
  • School of Transportation, Wuhan University of Technology, Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan University of Technology, Wuhan, China
  • School of Transportation, Wuhan University of Technology, Wuhan, China
autor
  • School of Mechanical Engineering Hubei University of Arts and Sciences Xiangyang, No.296 Longzhong Road, 441053, China
Bibliografia
  • 1. J. F. Jimenez and J. M. Giron-Sierra, “USV based automatic deployment of booms along quayside mooring ships: Scaled experiments and simulations ,” Ocean Engineering, vol. 207, pp. 1−12, Jul. 2020. doi:10.1016/j.oceaneng.2020.107438.
  • 2. J. Y. Zhuang, L. Zhang, Z. H. Qin, H. B. Sun, B. Wang, and J. Cao, “Motion control and collision avoidance algorithm for unmanned surface vehicle swarm in practical maritime environment,” Polish Maritime Research, vol. 26, no. 1, pp.107−116. doi: 10.2478/pomr-2019-0012.
  • 3. B. C. Shah and S. K. Gupta, “Long-distance path planning for unmanned surface vehicles in complex marine environment,” IEEE Journal of Oceanic Engineering, vol. 45, no. 3, pp. 813−830, Jul. 2020. doi:10.1109/JOE.2019.2909508.
  • 4. X. Liang, X. R. Qu, Y. H. Hou, Y. Li, and R. B. Zhang, “Distributed coordinated tracking control of multiple unmanned surface vehicles under complex marine environments,” Ocean Engineering, vol. 205, pp. 1−9, Jun. 2020. doi:10.1016/j.oceaneng.2020.107328.
  • 5. H. N. Esfahani and R. Szlapczynski, “Model predictive super-twisting sliding mode control for an autonomous surface vehicle”, Polish Maritime Research, vol. 26, no. 3, pp. 163−171, Sept. 2019. doi: 10.2478/pomr-2019-0057.
  • 6. M. A. Hinostroza, H. T. Xu, and C. G. Soares, “Cooperative operation of autonomous surface vehicles for maintaining formation in complex marine environment,” Ocean Engineering, vol. 183, pp. 132−154, Jul. 2019. doi:10.1016/j. oceaneng.2019.04.098.
  • 7. R. V. C. Vid, J. P. V. S. Cunha, and P. B. Garcia-Rosa, “Stabilizing control of an unmanned surface vehicle pushing a floating load ,” International Journal of Control, Automation and Systems, vol. 18, pp. 1−10, Jun. 2020. doi:10.1007/s12555-019-0677-1.
  • 8. S. S. Wang and Y. L. Tuo, “Robust trajectory tracking control of underactuated surface vehicle with prescribed performance,” Polish Maritime Research, vol. 27, no. 4, pp. 148−156, Dec. 2020. doi: 10.2478/pomr-2020-0075.
  • 9. C. Paliotta, E. Lefeber, K. Y. Pettersen, J. Pinto, M. Costa, and J. T. D. B. Sousa, “Trajectory tracking and path following for underactuated marine vehicles,” IEEE Transactions on Control Systems Technology, vol. 27, no. 4, pp. 1423−1437, Jul. 2019. doi:10.1109/TCST.2018.283-4518.
  • 10. J. Han and J. Kim, “Three-dimensional reconstruction of a marine floating structure with an unmanned surface vessel,” IEEE Journal of Oceanic Engineering, vol. 44, no. 4, pp. 984−996, Oct. 2019. doi:10.11-09/JOE.2018.2862618.
  • 11. K. Shojaei, “Leader–follower formation control of underactuated autonomous marine surface vehicles with limited torque,” Ocean Engineering, vol. 105, pp. 196−205, Jun. 2015. doi:10.1016/j.oceaneng. 2015.06.026.
  • 12. Z. Y. Gao and G. Guo, “Adaptive formation control of autonomous underwater vehicles with model uncertainties,” Int. J. Adapt. Control Signal Process, vol. 32, pp. 1067−1080, Mar. 2018. doi:10.1002/acs. 2886.
  • 13. J. Ghommam and M. Saad, “Adaptive leader–follower formation control of underactuated surface vessels under asymmetric range and bearing constraints,” IEEE Transactions on Control Systems Technology, vol. 67, no. 2, pp. 852−865, Feb. 2018. doi:10.1109/TVT. 2017.2760367.
  • 14. L. Y. Chen, H. Hopman, and R. R. Negenborn, “Distributed model predictive control for vessel train formations of cooperative multi-vessel systems,” Transportation Research Part C-Emerging Technologies, vol. 92, pp. 101−118, May 2018. doi:10.1016/j.trc.2018. 04.013.
  • 15. J. X. Zhang and G. H. Yang, “Fault-tolerant leader-follower formation control of marine surface vessels with unknown dynamics and actuator faults,” Int. J. Robust Nonlinear Control, vol. 28, pp. 4188−4208, Apr. 2018. doi:10.1002/ rnc.4228.
  • 16. M. Y. Fu and L. L. Yu, “Finite-time extended state observerbased distributed formation control for marine surface vehicles with input saturation and disturbances,” Ocean Engineering, vol. 159, pp. 219−227, Apr. 2018. doi:10.1016/j. oceaneng.2018.04.016.
  • 17. T. S. Li, R. Zhao, C. L. P. Chen, L. Y. Fang, and C. Liu, “Finite-time formation control of under-actuated ships using nonlinear sliding mode control,” IEEE Transportation on Cybernetics, vol. 48, no. 11, pp. 3243−3253, Nov. 2018. doi:10.1109/TCYB.2018.2794968.
  • 18. Z. J. Sun, G. Q. Zhang, Y. Lu, and W. D. Zhang, “Leaderfollower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation,” ISA Transactions, vol. 72, pp. 15−24, Nov. 2017. doi:10.1016/j.isatra.2017.11.008.
  • 19. S. L. Dai, S. D. He, H. Lin, and C. Wang, “Platoon formation control with prescribed performance guarantees for USVs,” IEEE Transportation on Industrial Electronics, vol. 65, no. 5, pp. 4237−4246, May 2018. doi:10.1109/TIE.2017.2758743.
  • 20. Y. Lu, G. Q. Zhang, Z. J. Sun, and W. D. Zhang, “Robust adaptive formation control of underactuated autonomous surface vessels based on MLP and DOB,” Nonlinear Dynamics, vol. 94, pp. 503−519, Jun. 2018. doi:10.1007/ s11071-018-4374-z.
  • 21. Y. Li and J. Zheng, “The design of ship formation based on a novel disturbance rejection control,” International Journal of Control, Automation and Systems, vol. 16, no. 4, pp. 1833−1839, Feb. 2018. doi: 10.1007/s12555-017-0424-4.
  • 22. B. S. Park and S. J. Yoo, “Adaptive-observe-based formation tracking of networked uncertain underactuated surface vessels with connectivity preservation and collision avoidance,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 356, pp. 7947−7966, Apr. 2019. doi:10.1016/j.jfranklin.2019.04.017.
  • 23. C. F. Huang, X. K. Zhang, and G. Q. Zhang, “Improved decentralized finite-time formation control of underactuated USVs via a novel disturbance observer,” Ocean Engineering, vol. 174, pp. 117−124, Jan. 2019. doi:10.1016/j.oceaneng.2019.01.043.
  • 24. Z. H. Peng, N. Gu, Y. Zhang, Y. J. Liu, D. Wang, and L. Liu, “Path-guided time-varying formation control with collision avoidance and connectivity preservation of under-actuated autonomous surface vehicles subject to unknown input gains,” Ocean Engineering, vol. 191, pp. 1−10, Oct. 2019. doi:10.1016/j.oceaneng.2019.106501.
  • 25. J. Li, J. L. Du, and W. J. Chang, “Robust time-varying formation control for underactuated autonomous underwater vehicles with disturbances under input saturation,” Ocean Engineering, vol. 179, pp. 180−188, Mar. 2019. doi:10.1016/j.oceaneng.2019.03.017.
  • 26. H. N. Esfahani, R. Szlapcznski and H. Ghaemi, “High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADPbased adaptive gains and time delay estimation”, Ocean Engineering, vol. 191, no. 106526, pp.1−19, Nov. 2019. doi:10.1016/j.oceaneng.2019.106526.
  • 27. T. Fossen, “Handbook of Marine Craft Hydrodynamics and Motion Control”, New York: Wiley, 2011.
  • 28. E. Panteley, E, Lefeber, A. Loria and H. Nijmeijer, “Exponential tracking control of a mobile car using cascaded approach,” IFAC Proceedings, vol. 31, no. 27, pp. 201−206, 1998. doi: 10.1016/S1474-6670(17)40028-0.
  • 29. H. K. Khalil, “Nonlinear Systems” 3rd ed., New Jersey: Prentice Hall, 2002.
  • 30. K. D. Do and J. Pan, “Global robust adaptive path following of underactuated ships,” Automatica, vol. 42, no. 10, pp.1713−1722, Oct. 2006. doi: 10.1016/j. automatica.2006.01.026.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9bcb8e2-440d-4910-98e6-8acebcd18114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.