PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Substitution mechanism of rare earths at fluorapatite characteristic sites : experimental and computational calculations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rare earths (REs) containing phosphate rock is a potential REs resource. The unclear occurrence mechanism of REs in phosphorite limits its further development and utilization. Fluorapatite (FAP) is the main REs-bearing target mineral in phosphorite, the microscopic mechanism of REs entering FAP still needs to be further studied from the electronic scale. In this paper, the doping mechanism of REs in FAP was studied by experiment combined with GGA+U calculation. The XRD, SEM, and FT-IR characterization results of hydrothermal synthesis products showed that REs (La, Ce, Nd, and Y) entered FAP crystal, and one of every 20 Ca atoms was replaced by a REs atom. The GGA+U calculation indicated that La-O/F, Ce-O/F, Nd-O/F, and Y-O/F were ionic bonds in general, and the bonding strength of La-O/F, Ce-O/F, Nd-O/F, and Y-O/F increased gradually with atomic number. The substitution difference of La, Ce, Nd, and Y was mainly caused by the gain and loss of electrons in f and d orbitals. The substitution mechanism of REs at the characteristic sites of Fap was studied, which provided a theoretical reference for the selective recovery of REs from phosphorus blocks.
Rocznik
Strony
art. no. 163418
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • Department of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • ABOUZEID, A.Z.M., NEGM, A.T., ELGILLANI, D.A., 2009. Upgrading of calcareous phosphate ores by flotation: Effect of ore characteristics. Int. J. Miner. Process. 90, 81–89.
  • ANISIMOV, V.I., ZAANEN, J., ANDERSEN, O.K., 1991. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954.
  • BATAPOLA, N.M., DUSHYANTHA, N.P., PREMASIRI, H.M.R., ABEYSINGHE, A.M.K.B., ROHITHA, L.P.S., RATNAYAKE, N.P., DISSANAYAKE, D.M.D.O.K., ILANKOON, I.M.S.K., DHARMARATNE, P.G.R., 2020. A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. J. Asian Earth Sci. 200, 104475.
  • BOYER, L., SAVARIAULT, J.M., CARPENA, J., LACOUT, J.L., 1998. A neodymium-substituted britholite compound. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 54, 1057–1059.
  • CHEN, J., YANG, R., WEI, H., GAO, J., 2013. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region. J. Rare Earths 31, 101–112.
  • CLARK, S.J., SEGALL, M.D., PICKARD, C.J., HASNIP, P.J., PROBERT, M.I.J., REFSON, K., PAYNE, M.C., 2005. First principles methods using CASTEP. Zeitschrift für Krist. - Cryst. Mater. 220, 567–570.
  • COMODI, P., LIU, Y., ZANAZZI, P.F., MONTAGNOLI, M., 2001. Structural and vibrational behaviour of fluorapatite with pressure. Part I: In situ single-crystal X-ray diffraction investigation. Phys. Chem. Miner. 28, 219–224.
  • DUSHYANTHA, N., BATAPOLA, N., ILANKOON, I.M.S.K., ROHITHA, S., PREMASIRI, R., ABEYSINGHE, B., RATNAYAKE, N., DISSANAYAKE, K., 2020. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev.
  • EMERY, A.A., WOLVERTON, C., 2017. High-Throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO 3 perovskites. Sci. Data 4, 1–10.
  • FILIPPOV, L.O., FILIPPOVA, I. V., KABA, O.B., FORNASIERO, D., 2021. In-situ study of the kinetics of phosphoric acid interaction with calcite and fluorapatite by Raman spectroscopy and flotation. Miner. Eng. 162, 106729.
  • FLEET, M.E., LIU, X., PAN, Y., 2000. Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]. J. Solid State Chem. 149, 391–398.
  • FLEET, M.E., PAN, Y., 1997. Site preference of rare earth elements in fluorapatite; binary (LREE+HREE)-substituted crystals. Am. Mineral. 82, 870–877.
  • FLEET, M.E., PAN, Y., 1995a. Site preference of rare earth elements in fluorapatite. Am. Mineral. 80, 329–335.
  • FLEET, M.E., PAN, Y., 1995b. Crystal chemistry of Rare Earth Elements in fluorapatite and some calc-silicates. Eur. J. Mineral. 7, 591–606.
  • FLEET, M.E., PAN, Y., 1994. Site Preference of Nd in Fluorapatite [Ca10(PO4)6F2]. J. Solid State Chem. 112, 78–81.
  • HIMMETOGLU, B., FLORIS, A., DE GIRONCOLI, S., COCOCCIONI, M., 2014. Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems. Int. J. Quantum Chem. 114, 14–49.
  • HUANG, W., LIU, W., ZHONG, W., CHI, X., RAO, F., 2021. Effects of common ions on the flotation of fluorapatite and dolomite with oleate collector. Miner. Eng. 174, 107213.
  • HUGHES, J.M., CAMERON, M., MARIANO, A.N., 1991. Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites. Am. Mineral. 76, 1165–1173.
  • JAIN, A., HAUTIER, G., ONG, S.P., MOORE, C.J., FISCHER, C.C., PERSSON, K.A., CEDER, G., 2011. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B - Condens. Matter Mater. Phys. 84, 1–10.
  • JI, B., ZHANG, W., 2021. Rare earth elements (REEs) recovery and porous silica preparation from kaolinite. Powder Technol. 391, 522–531.
  • JIN, H.-X., WU, F.-Z., MAO, X.-H., WANG, M.-L., XIE, H.-Y., 2017. Leaching isomorphism rare earths from phosphorite ore by sulfuric acid and phosphoric acid. Rare Met. 36, 840–850.
  • LIU, H., LIAO, L., MOLOKEEV, M.S., GUO, Q., ZHANG, Y., MEI, L., 2016. A novel single-phase white light emitting phosphor Ca9La(PO4)5(SiO4)F2:Dy3+: Synthesis, crystal structure and luminescence properties. RSC Adv. 6, 24577–24583.
  • MILOJKOV, D. V., SILVESTRE, O.F., STANIĆ, V.D., JANJIĆ, G. V., MUTAVDŽIĆ, D.R., MILANOVIĆ, M., NIEDER, J.B., 2020. Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents. J. Lumin. 217, 116757.
  • MONKHORST, H.J., PACK, J.D., 1976. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192.
  • MULLIKEN, R.S., 1955a. Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 23, 1833–1840.
  • MULLIKEN, R.S., 1955b. Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys. 23, 1841–1846.
  • NJEMA, H., BOUGHZALA, K., BOUGHZALA, H., BOUZOUITA, K., 2013. Structural analysis by Rietveld refinement of calcium and lanthanum phosphosilicate apatites. J. Rare Earths 31, 897–904.
  • PAN, Y., FLEET, M.E., 2002. Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Rev. Mineral. Geochemistry 48, 13–49.
  • PAN, Y., FLEET, M.E., CHEN, N., WEIL, J.A., NILGES, M.J., 2002. Site preference of Gd in synthetic fluorapatite by single-crystal W-band EPR and X-ray refinement of the structure: A comparative study. Can. Mineral. 40, 3
  • PERDEW, J.P., BURKE, K., ERNZERHOF, M., 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.
  • PERDEW, J.P., CHEVARY, J.A., VOSKO, S.H., JACKSON, K.A., PEDERSON, M.R., SINGH, D.J., FIOLHAIS, C., 1992. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687.
  • PFROMMER, B.G., CÔTÉ, M., LOUIE, S.G., COHEN, M.L., 1997. Relaxation of Crystals with the Quasi-Newton Method, Journal of Computational Physics.
  • QIU, Y.Q., CUI, W.Y., LI, L.J., YE, J.J., WANG, J., ZHANG, Q., 2017. Structural, electronic properties with different terminations for fluorapatite (0 0 1) surface: A first-principles investigation. Comput. Mater. Sci. 126, 132–138.
  • ROUT, A., AGRAWAL, S., 2022. Electronic and spectroscopic studies of rare earth doped yttrium strontium silicate fluorapatite compound. Opt. Laser Technol. 152, 108108.
  • VANDERBILT, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895.
  • WANG, M., QIAN, R., BAO, M., GU, C., ZHU, P., 2018. Raman, FT-IR and XRD study of bovine bone mineral and carbonated apatites with different carbonate levels. Mater. Lett. 210, 203–206.
  • WANG, X., ZHANG, Q., MAO, S., CHENG, W., 2019. A Theoretical Study on the Electronic Structure and Floatability of Rare Earth Elements (La, Ce, Nd and Y) Bearing Fluorapatite. Minerals 9, 500.
  • XIE, J., LI, X., MAO, S., LI, L., KE, B., ZHANG, Q., 2018. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (0 0 1) surface: A first-principles calculations. Appl. Surf. Sci. 444, 699–709.
  • XIE, J., ZHANG, Q., MAO, S., LI, X., SHEN, Z., LI, L., 2019. Anisotropic crystal plane nature and wettability of fluorapatite. Appl. Surf. Sci. 493, 294–307.
  • XIQIANG, L., HUI, Z., YONG, T., YUNLONG, L., 2020. REE Geochemical Characteristic of Apatite: Implications for Ore Genesis of the Zhijin Phosphorite. Minerals 10, 1012.
  • XUE, D., SUN, C., CHEN, X., 2017. Hybridized valence electrons of 4f0–145d0–16s2: the chemical bonding nature of rare earth elements. J. Rare Earths 35, 837–843.
  • ZHANG, Z., JIANG, Y., NIU, H., XING, J., YAN, S., LI, A., WENG, Q., ZHAO, X., 2021. Enrichment of rare earth elements in the early Cambrian Zhijin phosphorite deposit, SW China: Evidence from francolite micro-petrography and geochemistry. Ore Geol. Rev. 138, 104342.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9b8f4d2-e145-40cc-965b-69a632cf5a9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.