PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Biochar and Compost as Soil Amendments, Combined with Poultry Manure, on the Growth, Yield, and Chemical Composition of Lettuce (Lactuca sativa)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Farmers must prioritize soil enhancement methods to preserve soil health and sustainability as the world population grows, whereas arable lands deplete and degrade owing to poor land management and agricultural policy. Biochar and compost are essential for replacing nutrients and organic matter, improving soil quality. In 2019, an experiment was carried out at Jordan University of Science and Technology. Various soil amendments, including biochar and compost, both with and without the combination of poultry manure, were employed. The experimental design followed a completely randomized layout, with seven distinct treatments: T1–soil (control), T2–biochar (3%) (BC), T3–compost (3%) (Comp), T4–poultry manure (3%) (PM 3% (38.2 ton/ha)), T5–Biochar (3%)+poultry manure (60 ton/ha) (BC+PM 60 ton/ha), T6–compost (3%)+poultry manure (60 ton/ha) (Comp + PM 60 ton/ha), and T7–poultry manure (60 ton/ha) (PM 60 ton/ha). The assessment encompassed the examination of various physicochemical characteristics of the soil, including bulk density, porosity, water holding capacity, pH, and EC. Morphological and physiological measurements comprised height and length of plant shoots and roots, number of leaves, fresh and dry weight of shoots and roots, leaf relative water content, and chlorophyll content. Additionally, the chemical composition, encompassing crude fibers, crude fats, antioxidant activities, total phenols, flavonoid content, and minerals were evaluated. Physicochemical results revealed that (BC+PM 60 ton/ha) excelled in water holding capacity and porosity, whereas PM 60 ton/ha exhibited the optimal soil pH. In terms of morphological results, (Comp+PM 60 ton/ha) and (PM 3% (38.2 ton/ha)) demonstrated superiority in plant height, shoot fresh and dry weight. The application of (BC) outperformed in root fresh and dry weight and leaf relative water content, while (Comp) exhibited the highest root length. Poultry manure applications scored higher values in chlorophyll content, with (BC+PM 60 ton/ha) recording the highest among them. Chemical analysis revealed that crude fibers were highest with the application of (PM 3% (38.2 ton/ha)), while (control) recorded the highest antioxidant activities, total phenols, and total flavonoids. In terms of mineral content in shoots, (Comp+PM 60 ton/ha) demonstrated the highest nitrogen content. Phosphorus, potassium, magnesium, and calcium were most abundant in (BC+PM 60 ton/ha). Moreover, PM (60 ton/ha) exhibited the highest sodium content. Notably, the (BC+PM 60 ton/ha) application excelled in physiochemical soil properties, excluding soil pH and EC, while also demonstrating superior mineral content in lettuce plants, except for sodium.
Słowa kluczowe
Rocznik
Strony
12--28
Opis fizyczny
Bibliogr. 123 poz., rys., tab.
Twórcy
  • Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
  • Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
  • Department Of Plant Production & Protection, College of Agriculture. Jerash University, Jerash, Jordan
  • Department of Biological Sciences, Al Hussein bin Talal University, P.O. Box 20, Maan, Jordan
Bibliografia
  • 1. Adam, M. Y. 2004. Effect of Seed Rate and Nitrogen on Growth and Yield of Teff Grass (Eragrostis teff zucc.) Trotter. M.Sc. Thesis. Faculty of Agriculture, University of Khartoum, Sudan.
  • 2. Aggelides, S. M., Londra, P. A. 2000. Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresource technology, 71(3), 253–259.
  • 3. Ahmed, G. A., Mahdy, A. M. M., Fawzy, R. N., Gomaa, N. A. 2017. Integrated Management of Tomato Sclerotinia Rot Disease by using the Combined Treatments between Compost, Bioagents and some Commercial Biocides.
  • 4. Akachukwu, D., Gbadegesin, M. A., Ojimelukwe, P. C., Atkinson, C. J. 2018. Biochar remediation improves the leaf mineral composition of Telfairia occidental is grown on gas flared soil. Plants, 7(3), 57.
  • 5. Aleman, C. C., Marques, P. A. 2016. Irrigation and organic fertilization on the production of essential oil and flavonoid in chamomile. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(12), 1045–1050.
  • 6. Alatrash, H., Tawaha, A. R. M., Jabbour, Y., Al-Tawaha, A. R., Abusalem, M., Khanum, S, Khalid, S., 2022. Abiotic stress response and adoption of triticale. In Omics approach to manage abiotic stress in cereals. 599–615. Singapore: Springer Nature Singapore. https://doi. org/10.1007/978-981-19-0140-9_25
  • 7. Al-Ghzawi, A. L. A., Al-Ajlouni, Z. I., Sane, K. O. A., Bsoul, E. Y., Musallam, I., Khalaf, Y. B., Al-Saqqar, H. 2019. Yield stability and adaptation of four spring barley (Hordeum vulgare L.) cultivars under rainfed conditions. Research on Crops., 20(1), 10–18.
  • 8. Ali, I., Khan, A., Ali, A., Ullah, Z., Dai, D. Q., Khan, N., Sher, H. 2022. Iron and zinc micronutrients and soil inoculation of Trichoderma harzianum enhance wheat grain quality and yield. Frontiers in Plant Science, 13, 960948. doi: 10.3389/fpls.2022.9609480.
  • 9. Ali, I., Tawaha, A. R., Khan, M. D., Samir, R., Sachan, K., Devgon, I., Karnwal, A. 2022. Biochemical and molecular mechanism of wheat to diverse environmental stresses. In Omics approach to manage abiotic stress in cereals, 435–446. Singapore: Springer Nature Singapore.
  • 10. Al Tawaha, A. R. M., Singh, A., Rajput, V. D., Varshney, A., Agrawal, S., Ghazaryan, K., Shawaqfeh, S. 2024. Green Nanofertilizers-The Need for Modern Agriculture, Intelligent, and EnvironmentallyFriendly Approaches. Ecological Engineering & Environmental Technology (EEET) 25(1), 1–21. https://doi.org/10.12912/27197050/172946
  • 11. Al Tawaha, A. R., Megat Wahab, P. E., Binti Jaafar, H., Kee Zuan, A. T., Hassan, M. Z., AlTawaha, A. R. M. 2021. Yield and nutrients leaf content of butterhead lettuce (Lactuca sativa) in response to fish nutrient solution in a small scale of aquaponic systems. Engineering & Environmental Technology, 22(6), 85–94. https://doi. org/10.12912/27197050/141524
  • 12. Al-Tawaha, A. M., Al-Ghzawi, A, 2013. Response of barley cultivars to chitosan application under semi-arid conditions. Res. Crop., 14, 427–430.
  • 13. Al-Tawaha, A. R. M. S., Ondrasek, G. (Eds.). 2023. Integrated nutrients management: An approach for sustainable crop production and food security in changing climates. Frontiers Media SA. doi: 10.3389/978-2-8325-3169-3
  • 14. Al-Tawaha, A. R., Al-Tawaha, A. R., Alu’datt, M., Al-Ghzawi, A. L., Wedyan, M., Al-Obaidy, S. D. A., Al-Ramamneh, E. A. D. 2018. Effects of soil type and rainwater harvesting treatments in the growth, productivity and morphological trains of barley plants cultivated in semi-arid environment. Australian journal of crop science, 12(6), 975–979.
  • 15. Al-Tawaha, A. R., M. A. Turk, Y. M. Abu-Zaitoon, S. H. Aladaileh, I. M. Al-Rawashdeh, S. Alnaimat, A. R. M. Al-Tawaha, M. H. Alu’datt, M. Wedyan. 2017. Plants adaptation to drought environment. Bulg. J. Agric. Sci., 23(3), 381–388.
  • 16. Al-Taey, D. K. A., Al-Shareefi, M. J. H., Mijwel, A. K., Al-Tawaha, A. R., Al-Tawaha, A. R. 2019. The benefi cial effects of bio-fertilizers combinations and humic acid on growth, yield parameters and nitrogen content of broccoli grown under drip irrigation system. Bulgarian Journal of Agricultural Science, 25(5), 959–966.
  • 17. Amanullah, Khalid, S., Muhammad, A., Khan, K. 2021. Integrated use of biofertlizers with organic and inorganic phosphorus sources improve dry matter partitioning and yield of hybrid maize. Communications in Soil Science and Plant Analysis, 52(21), 2732–2747 doi: 10.1080/00103624.2021.1956520.
  • 18. Amanullah, Yar, M., Khalid, S., Elshikh, M. S., Akram, H. M., Imran, Ali, A. 2022. Phenology, growth, productivity, and profitability of mungbean as affected by potassium and organic matter under water stress vs. no water stress conditions. Journal of Plant Nutrition, 45(5), 629–650. doi: 10.1080/0 1904167.2021.1936025
  • 19. Andrenelli, M. C., Maienza, A., Genesio, L., Miglietta, F., Pellegrini, S., Vaccari, F. P. Vignozzi, N. 2016. Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil. Agric. Water Manag., 163, 190–196.
  • 20. Antil, R. S., Singh, M. 2007. Effects of organic manures and fertilizers on organic matter and nutrients status of the soil. Archives of Agronomy and Soil Science, 53(5), 519–528.
  • 21. AOAC. 1995. Official methods of analysis. 16th Ed. Association of Official Analytical Chemists (AOAC). Washington, D.C.
  • 22. Asaduzzaman, M., Rahman, M. M., Azim, M. E., Islam, M. A., Wahab, M. A., Verdegem, M. C. J., Verreth, J. A. J. 2010. Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306(1–4), 127–136.
  • 23. Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S. Alami, I. T. 2018. Composting parameters and compost quality: a literature review. Organic Agriculture, 8(2), 141–158.
  • 24. Baiyeri, P. K., Otitoju, G. T., Abu, N. E. Umeh, S. 2016. Poultry manure influenced growth, yield and nutritional quality of containerized aromatic pepper (Capsicum annuum L., var Nsukka Yellow). African Journal of Agricultural Research, 11(23), 2013–2023.
  • 25. Barnes, R. T., Gallagher, M. E., Masiello, C. A., Liu, Z. Dugan, B. 2014. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient f luxes constrained by laboratory experiments. Plos One 9(9), e108340.
  • 26. Biratu, G. K., Elias, E., Ntawuruhunga, P. Nhamo, N. 2018. Effect of chicken manure application on cassava biomass and root yields in two agro-ecologies of Zambia. Agriculture, 8(4), 45.
  • 27. Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol, 28, 25–30.
  • 28. Brito, L. M., Reis, M., Mourão, I.,, Coutinho, J. 2015. Use of acacia waste compost as an alternative component for horticultural substrates. Communications in Soil Science and Plant Analysis, 46(14), 1814–1826.
  • 29. Bronick C. J., Lal, R. 2005. Soil structure and management: A review. Geoderma., 124, 3–22.
  • 30. Brown, E. F., Pokorny, F. A. 1975. Physical and chemical properties of media composed of milled pine [Pinustaeda] bark and sand [Ornamental plants]. Journal American Society for Horticultural Science, 100, 119–121.
  • 31. Buer, C. S., Imin, N., Djordjevic, M. A. 2010. Flavonoids: New roles for old molecules. Journal of Integrative Plant Biology, 52, 98–111. http://dx.doi. org/10.1111/j.1744-7909.2010.00905.x
  • 32. Carter, S., Shackley, S., Sohi, S., Suy, T. Haefele, S. 2013. The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3(2), 404–418.
  • 33. Chan, K., Xu, Z. 2009. Biochar: Nutrient Properties and Their Enhancement, in J. Lehmann, S. Joseph: Biochar for Environmental Management. Science and Technology. Earthscan, London, UK, 67–84.
  • 34. Chapman, H. D., Pratt, P. F. 1961. Soil water and plant analysis. Univ. California Agri. Div. Publisher
  • 35. Chen, G., Qiao, J., Zhao, G., Zhang, H., Shen, Y., Cheng, W. 2018. Rice‐Straw Biochar Regulating Effect on Chrysanthemum morifolium Ramat. cv. ‘Hangbaiju’. Agronomy Journal, 110(5), 1996–2003.
  • 36. Coria-Cayupán, Y. S., Sánchez de Pinto, M. I., Nazareno, M. A. 2009. Variations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. Journal of Agricultural and Food Chemistry, 57(21), 10122–10129.
  • 37. Curtis, M. J. and Claassen V. P. 2009. Regenerating Topsoil Functionality in Four Drastically Disturbed Soil Types by Compost Incorporation. Restoration Ecology, 17, 24–32.
  • 38. De Boodt, M. A. V. O. and Verdonck, O. 1971. The physical properties of the substrates in horticulture. In III Symposium on Peat in Horticulture, 26, 37–44.
  • 39. El-Radaideh, N., Al-Taani, A. A., Al-Momani, T., Tarawneh, K., Batayneh, A., Taani, A. 2014. Evaluating the potential of sediments in Ziqlab Reservoir (northwest Jordan) for soil replacement and amendment. Lake and Reservoir Management, 30(1), 32–45.
  • 40. Evanylo, G., Sherony, C., Spargo, J., Starner, D., Brosius, M., Haering, K. 2008. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agriculture, Ecosystems and Environment, 127, 50–58.
  • 41. Fricke, C. and H. Vogtmann. 1993. Quality of source separated compost. Research results from Germany. BioCycle, 34(10), 64–70.
  • 42. Gangwar, K. S., Singh, K. K., Sharma, S. K., Tomar, O. K. 2006. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of IndoGengetic plains. Soil Till. Res., 88, 242–252.
  • 43. Gasim, S. A. 2001. Effect of Nitrogen, Phosphorus and Seed Rate on Growth, Yield and Quality of Forage Maize (Zea mays L.). M.Sc. Thesis. Faculty of Agriculture, University of Khartoum, Sudan.
  • 44. Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Niggli, U. 2012. Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences, 109(44), 18226–18231.
  • 45. Ghorbani, M., Asadi, H., Abrishamkesh, S. 2019. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International soil and water conservation research, 7(3), 258–265.
  • 46. Giménez, A., Fernández, J. A., Pascual, J. A., Ros, M., Egea-Gilabert, C. 2020. Application of Directly Brewed Compost Extract Improves Yield and Quality in Baby Leaf Lettuce Grown Hydroponically. Agronomy, 10(3), 370.
  • 47. Han, Y., Fan, Y., Yang, P., Wang, X., Wang, Y., Tian, J., Wang, C. 2014. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China. Geoderma, 213, 87–94.
  • 48. Hani, N. B., Al-Ramamneh, E. A. D., Haddad, M., Al-Tawaha, A. R., Al-Satari, Y. 2019. The Impact Of Cattle Manure On The Content Of Major Minerals And Nitrogen Uptake From 15n Isotope-Labeled Ammonium Sulphate Fertilizer In Maize (Zea Mays L.) Plants. Pakistan Journal Of Botany, 51(1), 185–189.
  • 49. Heald, W. R. 1965. Calcium and Magnesium 1. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilanb), 999–1010.
  • 50. Hernández, A., Castillo, H., Ojeda, D., Arras, A., López, J., Sánchez, E. 2010. Effect of vermicompost and compost on lettuce production. Chilean Journal of Agricultural Research, 70(4), 583–589.
  • 51. Hopkins, W. G., Hüner, N. 2004. Introduction to plant physiology (No. 581.1 H6 2004).
  • 52. International Organization for Standardization (ISO). 2017. ISO 11272-2017. Soil Quality—Determination of Dry Bulk Density. International Organization for Standardization, Geneva.
  • 53. Imran, Amanullah, Al Tawaha, A. R. 2023. Regenerating potential of dual purpose rapeseed (Brassica napus L.) as influenced by decapitation stress and variable rates of phosphorous. Communications in Soil Science and Plant Analysis 54(4), 534–543. do i: 10.1080/00103624.2022.2118297
  • 54. Imran, I., Amanullah, A., Al Tawaha, A. R. 2022. Indigenous organic resources utilization, application methods and sowing time replenish soil nitrogen and increase maize yield and total dry biomass. Journal of Plant Nutrition 45(18), 2859–2876. doi: 10.108 0/01904167.2022.2067055
  • 55. Jamsheed, B., Bhat, T. A., Saad, A. A., Nazir, A., Fayaz, S., Eldin, S. M., Jamsheed, B., Bhat, T. A., Saad, A. A., Nazir, A., Fayaz, S., Eldin, S. M., Al Tawaha, A. M., Aljarba, N. H., Al–Hazani, T. M., Verma, N. 2023. Estimation of yield, phenology and agro-meteorological indices of quality protein maize (Zea mays L.) under different nutrient omissions in temperate ecology of Kashmir. Journal of King Saud University-Science, 35(7), 102808.
  • 56. Javanmardi, J., Ghorbani, E. 2012. Effects of chicken manure and vermicompost teas on herb yield, secondary metabolites and antioxidant activity of lemon basil (Ocimum × citriodorum Vis.). Advances in Horticultural Science, 151–157.
  • 57. Karhu, K., Mattila, T., Bergström, I., Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–Results from a short-term pilot field study. Agriculture, Ecosystems & Environment, 140(1–2), 309–313.
  • 58. Karnwal, A., Shrivastava, S., Al-Tawaha, A. R. M. S., Kumar, G., Kumar, A., Kumar, A. 2023. PGPR-Mediated Breakthroughs in Plant Stress Tolerance for Sustainable Farming. Journal of Plant Growth Regulation 1–17. https://doi.org/10.1007/ s00344-023-11013-z.
  • 59. Khaleel, R., Reddy, K. R., Overcash, M. R. 1981. Changes in soil physical properties due to organic waste applications: a review. Journal of Environmental Quality, 10, 133–141.
  • 60. Khalid, A. A., Tuffour, H. O., Bonsu, M., Parker, B. Q. 2014. Effects of poultry manure and NPK fertilizer on physical properties of a sandy soil in Ghana. Int. J. Sci. Res. Agric. Sci., 1(1), 1–5.
  • 61. Khalid, S., Arif, M., Fahad, S., Al-Tawaha, A. R. M., 2021. Bio Fertilizer as a Tool for Soil Fertility Management in a Changing Climate. In Sustainable Soil and Land Management and Climate Change, 165–177. CRC Press.
  • 62. Khan, M. A., Basir, A., Adnan, M., Fahad, S., Ali, J., Mussart, M., Mian, I. A., Ahmad, M., Saleem, H. M., Naseem, W., El Sabagh, A., Al-Tawaha, A. M., Arif, M., Amanullah, Saud, S., Nawaz, T., Badshah, S., Hassan, S., Munir, I. 2023. Biochar to Improve Crops Yield and Quality Under a Changing Climate. In Sustainable Agriculture Reviews 61: Biochar to Improve Crop Production and Decrease Plant Stress under a Changing Climate, 57–73. Cham: Springer International Publishing. https:// doi.org/10.1007/978-3-031-26983-7_2
  • 63. Khanum, S., Al-Tawaha, A. R. M., Al-Tawaha, A. R., Alatrash, H., Rauf, A., Karnwal, A., Gunal, E., 2023. Role of AMF in Sustainable Agriculture. In Mycorrhizal Technology, 219–236. Apple Academic Press.
  • 64. Khresat, S., Rawajfih, Z., Rusan, M. 1998. Land degradation in north-western Jordan: Causes and processes. Journal of Arid Environments - J Arid Environ., 39, 623–629. doi: https://doi.org/10.1006/ jare.1998.0385
  • 65. Klute, A. 1986. Water retention: laboratory methods. In: Methods of Soil Analysis. Part 1, American Society of Agronomy, Madison, WI, USA. https:// doi.org/10.1016/j.jksus.2023.102808
  • 66. Landis, T. D. 1990. Growing media. Containers and growing media, 2, 41–85. Chapter six, 101.
  • 67. Lee, S. K., Kader, A. A. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest biology and technology, 20(3), 207–220.
  • 68. Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Krüger, J., Grignani, C., Spiegel, H. 2014. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil use and management, 30(4), 524–538.
  • 69. Leogrande, R., Lopedota, O., Fiore, A., Vitti, C., Ventrella, D. Montemurro, F. 2013. Previous crops and organic fertilizers in lettuce: effects on yields and soil properties. Journal of plant nutrition, 36(13), 1945–1962.
  • 70. Levy, D., Veilleux, R. E. 2007. Adaptation of potato to high temperatures and salinity. Am. J. Potato Res., 84, 487–506.
  • 71. Maiti, S. K., Ahirwal, J. 2019. Ecological restoration of coal mine degraded lands: topsoil management, pedogenesis, carbon sequestration, and mine pit limnology. In Phytomanagement of Polluted Sites, 83–111. Elsevier.
  • 72. Manolikaki, I., Diamadopoulos, E. 2017. Ryegrass yield and nutrient status after biochar application in two Mediterranean soils. Archives of Agronomy and Soil Science, 63(8), 1093e1107.
  • 73. Marchi, E. C. S., Marchi, G., Silva, C. A., de Oliveira Dias, B. 2015. Lettuce growth characteristics as affected by fertilizers, liming, and a soil conditioner. Journal of Horticulture and Forestry, 7(3), 65–72.
  • 74. Masarirambi, M. T., Dlamini, P., Wahome, P. K., Oseni, T. O. 2012. Effects of chicken manure on growth, yield and quality of lettuce (Lactuca sativa L.)‘Taina’under a lath house in a semi-arid sub-tropical environment. Agric. & Environ. Sci, 12(3), 399–406.
  • 75. Masarirambi, M. T., Hlawe M. M., Oseni O. T., Sibiya T. E. 2010. Effects of organic fertilizers on growth, yield, quality and sensory evaluation of red lettuce (Lactuca sativa L.) ‘Veneza Roxa’. Agric. Biol. J. North America, 1(6), 1319–1324.
  • 76. Masarirambi, M. T., Mbokazi, B. M., Wahome, P. K., Oseni, T. O. 2012. Effects of kraal manure, chicken manure and inorganic fertilizer on growth and yield of lettuce (Lactuca sativa L. var Commander) in a semi-arid environment. Asian Journal of Agricultural Sciences, 4(1), 58–64.
  • 77. Mensah, A. K., Frimpong, K. A. 2018. Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. International Journal of Agronomy, 2018.
  • 78. Metwally, N. E. 2015. Effect of Compost Addition to Growing Medium to Reduce the Use of Inorganic Nutrient Solution in Lettuce Production on Rooftops. Middle East J, 4(4), 1009–1016.
  • 79. Mohawesh, O., Coolong, T., Aliedeh, M., Qaraleh, S. 2018. Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment. Bulg. J. Agric. Sci., 24, 1012–1019.
  • 80. Mondini, C., Coleman, K., Whitmore, A. P. 2012. Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment. Agriculture, ecosystems & environment, 153, 24–32.
  • 81. Moyin-Jesu, E. I. 2015. Use of different organic fertilizers on soil fertility improvement, growth and head yield parameters of cabbage (Brassica oleraceae L). International Journal of Recycling of Organic Waste in Agriculture, 4(4), 291–298.
  • 82. Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., Niandou, M. A. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil science, 174(2), 105–112.
  • 83. Nwite, J. C. 2016. Enhancing Soil Fertility Status, Sweet Potato Yield and Tuber Nutrient Composition through Different Manure Sources in Southeastern Nigeria. Archives of Current Research International 4(3), 1–11.
  • 84. Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Børresen, T. 2016. In situ effects of biochar on aggregation, water retention and porosity in lighttextured tropical soils. Soil Till. Res., 155, 35–44.
  • 85. Okoli, P.S.O., Nweke, I.A. 2015. Effect of different rates of poultry manure on growth and yield of amarathus (Amaranthus cruentus). IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) eI, 8(2), 73–76.
  • 86. Olasupo, I.O., Aiyelaagbe, I.O.O., Makinde, E.A., Afolabi, W.A.O. 2018. Growth, Yield, and Nutritional Composition of Plastic Tunnel-Grown Lettuce in Response to Poultry Manure. International Journal of Vegetable Science, 24(6), 526–538.
  • 87. Ozenc, D., Ozenc, N. 2008. Short-term effects of hazelnut husk compost and organic amendment application o clay loam soil. Compost Science and Utilization, 16(3), 192–199.
  • 88. Pengcheng, G., Xinbao, T., Yanan, T., Yingxu, C. 2007. Application of sewage sludge compost on highway embankments. Waste Management, 28(9), 1630–1636.
  • 89. Petruccelli, R., Bonetti, A., Traversi, M.L., Faraloni, C., Valagussa, M., Pozzi, A. 2015. Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop and Pasture Science, 66(7), 747–755.
  • 90. Piccolo, A. 2012. The nature of soil organic matter and innovative soil managements to fight global changes and maintain agricultural productivity. In Carbon sequestration in agricultural soils, 1–19. Springer, Berlin, Heidelberg.
  • 91. Pratt, D. E. 1992. Natural antioxidants from plant material.
  • 92. Price, G.W., Voroney, R.P. 2007. Papermill biosolids effect on soil physical and chemical properties. Journal of Environmental Quality, 36, 1704–1714.
  • 93. Qaisi, A.M., Al Tawaha, A.R., Imran, Al-Rifaee, M.D. 2023. Effects of Chitosan and Biocharmended soil on growth, yield and yield components and mineral composition of fenugreek. Gesunde Pflanzen, 75(3), 625–636. https://doi.org/10.1007/ s10343-022-00727-x.
  • 94. Quebedeaux, Jr Quartacci, M.F., Sgherri, C. Frisenda, S. 2017. Biochar amendment affects phenolic composition and antioxidant capacity restoring the nutraceutical value of lettuce grown in a copper-contaminated soil. Scientia Horticulturae, 215, 9–14.
  • 95. Reis, M., Coelho, L., Beltrão, J., Domingos, I., Moura, M. 2014. Comparative effects of inorganic and organic compost fertilization on lettuce (Lactuca sativa L.). Int. J. Energ. Environ. International Journal of Energy and Environment, 8, 137–146.
  • 96. Rivenshield, A., Bassuk, N.L. 2007. Using organic amendments to decrease bulk density and increase macroporosity in compacted soils. Arboriculture and Urban Forestry, 33(2), 140.
  • 97. Sabahy, A., Bahnasawy, A., Ali, S., El-Haddad, Z. 2014. Physical and chemical properties of some soilless media. Researcher Assoc., Agric. Eng. Res. Inst., Agric. Res. Center, Egypt.
  • 98. Safdar, Z. 1997. Optimization of nitrogen and its effect on yield and quality of maize fodder. MSc. (Hons.) Agri. Thesis, Dept. of Agron., Univ. of Agric., Faisalabad, Pakistan.
  • 99. Saranraj, P., Sivasakthivelan, P., Al-Tawaha, A. R. M., Bright, R., Al-Tawaha, A. R., Thangadurai, D., Sirajuddin, S. N. 2021. Macronutrient management for the cultivation of Soybean (Glycine max L.): A review. In IOP Conference Series: Earth and Environmental Science 788(1), 012055. IOP Publishing.
  • 100. Sekar, S. 2014. Effects of biochar and anaerobic digester effluent on soil quality and crop growth in Karnataka. India Agric. Res., 3, 137–147.
  • 101. Singh, A., Agrawal, S., Rajput, V.D., Ghazaryan, K., Movsesyan, H.S., Minkina, T., Al Tawaha, A. M., Alexiou, A., Singh, B., Gupta, S.K., 2023. Seed Nanopriming: An Innovative Approach for Upregulating Seed Germination and Plant Growth Under Salinity Stress. In: Nanopriming Approach to Sustainable Agriculture, 290–313. IGI Global. https:// doi.org/10.4018/978-1-6684-7232-3.ch013.
  • 102. Singh, A., Ghazaryan, K., Hasmik, S., Movsesyan, A., Alexiou, A.T., Al Tawaha, A.M., Chakrawarti, N., Sharma, R., Agrawal, S., Singh, O., Shahi, U. P., 2023b. Insight into Methanobiology and Role of Emerging Technologies in Methane Management. Biogeosystem Technique, 10(1), 12–31.
  • 103. Singh, A., Rajput, V.D., Tawaha, A.R.M., Al Zoubi, O.M., Habeeb, T., Rawat, S..., Minkina, T., 2023c. A Review on Crop Responses to Nanofertilizers for Mitigation of Multiple Environmental Stresses. Ecological Engineering & Environmental Technology, 24(7), 280–296. https://doi. org/10.12912/27197050/169313
  • 104. Singh, A., Rawat, S., Rajput, V. D., Ghazaryan, K., Minkina, T., Al Tawaha, A.R.M., Varshney, A., 2023a. Impact of Nanofertilizers for the Mitigation of Multiple Environmental Stresses. In Nanofertilizers for Sustainable Agroecosystems: Recent Advances and Future Trends, 431–454. Cham: Springer Nature Switzerland. https://doi. org/10.1007/978-3-031-41329-2_16
  • 105. Singh, A., Sengar, R.S., Rajput, V.D., Agrawal, S., Ghazaryan, K., Minkina, T., Habeeb, T. 2023a. Impact of zinc oxide nanoparticles on seed germination characteristics in rice (Oryza Sativa L.) Under Salinity Stress. Journal of Ecological Engineering, 24(10), 142–156. https://doi. org/10.12911/22998993/169142
  • 106. Singh, A., Sengar, R.S., Rajput, V.D., Shahi, U.P., Ghazaryan, K., Minkina, T., Al Tawaha, A.R.M., 2024. Impact of Salinity Stress and Zinc Oxide Nanoparticles on Macro and Micronutrient Assimilation: Unraveling the Link between Environmental Factors and Nutrient Uptake. Journal of Ecological Engineering, 25(2), 1–9. https://doi. org/10.12911/22998993/172947.
  • 107. Singh, A., Sharma, R., Rajput, V.D., Ghazaryan, K., Minkina, T., Al Tawaha, A.R.M., Varshney, A., 2023b. Green Synthesis of Nanofertilizers and Their Application for Crop Production. In Nanofertilizers for Sustainable Agroecosystems: Recent Advances and Future Trends, 205231. Cham: Springer Nature Switzerland. https:// doi.org/10.1007/978-3-031-41329-2_8
  • 108. Slinkard, J. Singleton, V.L. 1977. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49–55.
  • 109. Solaiman, Z.M., Yang, H.J., Archdeacon, D., Tippett, O., Tibi, M., Whiteley, A.S. 2019. Humusrich compost increases lettuce growth, nutrient uptake, mycorrhizal colonisation, and soil fertility. Pedosphere, 29(2), 170–179.
  • 110. Sørensen, J.N., A.S. Johansen, and Poulsen, N. 1994. Influence of growth conditions on the value of crisphead lettuce. 1. Marketable and nutritional quality as affected by nitrogen supply, cultivar and plant age. Plant Foods for Human Nutrition, 46, 1–11.
  • 111. Taiz, L., Zeiger, E. 2002. Plant physiology. Sinauer associates, Sunderland, Mass, USA.
  • 112. Tariq, M. 1998. Fodder yield and quality of two maize varieties at different nitrogen levels. MSc Thesis Dept. Agron. Univ. Agric. of Faisalabad.
  • 113. Tasneem, S., Zahir, S. 2017. Soil respiration, pH and EC as influenced by biochar. Soil and Environment, 36(1), 77–83.
  • 114. Thiex, N. J., Anderson, S. Gildemeister, B. 2003. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): collaborative study. Journal of AOAC International, 86(5), 888–898.
  • 115. Trupiano, D., Cocozza, C., Baronti, S., Amendola, C., Vaccari, F.P., Lustrato, G., Scippa, G.S. 2017. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomy.
  • 116. Ukom, A.N., Ojimelukwe, P.C., Okpara, D.A. 2009. Nutrient Composition of Selected Sweet Potato [Ipomoea batatas (L.) Lam] Varieties as Influenced by Different Levels Nitrogen of Application. Pakistan Journal of Nutrition, 8(11), 1791–1795.
  • 117. Ullah, I., Rahman, J., Ahmad, S.K.I., Amin, N. U., Sajid, M., Habib, N. Alam, M. 2017. Influence of organic manure on growth and yield of lettuce cultivars. International Journal of Agricultural and Environmental Reseach, 3(4),423-438.
  • 118. Upadhyay, K.P., George, D., Swift, R.S., Galea, V. 2014. The influence of biochar on growth of lettuce and potato. Journal of Integrative Agriculture, 13(3), 541–546.
  • 119. Van Soest, P.J. 1966. Nonnutritive residues: a system of analysis for the replacement of crude fiber. Journal of the Association of Official Analytical Chemists, 49, 546–551.
  • 120. Woldetsadik, D., Drechsel, P., Marschner, B., Itanna, F. Gebrekidan, H. 2018. Effect of biochar derived from faecal matter on yield and nutrient content of lettuce (Lactuca sativa) in two contrasting soils. Environmental Systems Research, 6(1), 1–12.
  • 121. Young, I., Renault, S., Markham, J. 2015. Low levels organic amendments improve fertility and plant cover on non-acid generating gold mine tailings. Ecological Engineering, 74, 250–257.
  • 122. Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X. 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil, 351, 263–275.
  • 123. Zhishen, J., Mengcheng, T., Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9b81e87-4e1b-4540-9ce8-f3cd5d494aac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.