PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Attempts to apply heuristic research methodology in mechanical engineering on the example of rotating machines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On any website or in encyclopaedias such as Britannica or Wikipedia, under the entry ‘heuristics,’ one can find numerous definitions, references, and examples from various areas of life. However, the authors of this article have been unable to find examples relevant to technology, particularly in mechanical engineering. This fact inspired us to address this topic, especially since many concrete examples from practice and everyday life seem well-suited to demonstrating the relevance of heuristic methodologies in technical sciences. According to the authors, turbomachinery appears to be of particular interest in this context. This is critical machinery, i.e., machinery whose failure threatens human life. Hence the importance of developing advanced tools to analyze them, especially across the entire operating range (both stable and unstable). With these tools, one can effectively use their intellect, intuition, and common sense in the decision-making process. A classic heuristic symbiosis is thus formed. The paper demonstrates an advanced computer system called MESWIR, developed at the Institute of Fluid-Flow Machinery of the Polish Academy of Sciences in Gdańsk (IMP PAN), which generates a range of interesting diagnostic information, including multiple whirls and stochastic errors related to the unbalance vector. The research was conducted using high-speed, low-power turbines as examples. Although there is no formal theoretical proof of their correctness, the results obtained facilitate drawing the right conclusions and making informed decisions, which is the essence of decision-making heuristics.
Rocznik
Strony
art. no. e152707
Opis fizyczny
Bibliogr. 52 poz., rys., wykr,
Twórcy
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
Bibliografia
  • [1] D. Ruelle, “A Heuristic Theory of Phase Transitions,” Commun. Math. Phys., vol. 53, pp. 195–208, 1977.
  • [2] J.W. Wicken, “The Entropy Gradient: A Heuristic Approach to Chemical Equilibrium,” J. Chem. Edu., vol. 55, no. 11, pp. 701–703, 1978.
  • [3] S.K. Morton and J.P.H. Webber, “Heuristic Methods in the Design of Composite Laminated Plates,” Compos. Struct., vol. 19, pp. 207–265, 1991.
  • [4] U. Alon, I. Balberg, and A. Drory, “New, Heuristic, Percolation Criterion for Continuum Systems,” Phys. Rev. Lett., vol. 66, no. 22, pp. 2879–2882, 1991.
  • [5] R. Chen, “Heuristic Algorithm for Topology Optimization of Continuum Structure,” J. Discret. Math. Sci. Cryptogr., vol. 21, no. 6, pp. 1379–1384, 2018, doi: 10.1080/09720529.2018.1526769.
  • [6] V.T. Ramamoorthy, E. Özcan, A.J. Parkes, A. Sreekumar, L. Jaouen, and F.-X. Bécot, “Comparison of heuristics and metaheuristics for topology optimisation in acoustic porous materials,” J. Acoust. Soc. Am., vol. 150, pp. 3164–3175, 2021, doi: 10.1121/10.0006784.
  • [7] J.L. Terrádez Marco, A. Hospitaler Pérez, and V.A. Gabarda, “Heuristic Optimization of the Foundation of a Dynamically Stressed Rotating Machine Using the Late Acceptance Hill Climbing Algorithm,” DYNA, vol. 96, no. 5, pp. 498–504, 2021, doi: 10.6036/9762.
  • [8] V. Bhagat and J. Pitchaimani, “Meta-heuristic optimization of buckling and fundamental frequency of laminated cylindrical panel under graded temperature fields,” Polym. Polym. Compos., vol. 29, no. 9S, pp. 1305–1316, 2020, doi: 10.1177/0967391120974155.
  • [9] W. Boucheriette, R. Mechgoug, and H. Benguesmia, “Optimization of Fractional Order PI Controller Using Meta-Heuristics Algorithms Applied to Multilevel Inverter for Grid-Connected PV,” Diagnostyka, vol. 24, no. 3, p. 2023311, 2023, doi: 10.29354/diag/171430.
  • [10] I. Aydogdu, V. Kilic, and A. Akin, “Optimum Design of Pin-Jointed Aluminum Structures to AA-ASD Using Three Meta-Heuristic Algorithms,” Structures, vol. 55, pp. 1406–1422, 2023, doi: 10.1016/j.istruc.2023.06.091.
  • [11] Z. Hu, H. Zhang, J. Wang, and L. Wang, “Heuristic Optimality Criterion Algorithm for Topology Optimization of Conjugate Heat Transfer Problem,” Int. J. Therm. Sci., vol. 200, p. 108949, 2024, doi: 10.1016/j.ijthermalsci.2024.108949.
  • [12] Q. Zhanga and X. Zhou, “Predicting the Fracture Characteristics of Concrete Using Ensemble and Meta-Heuristic Algorithms,” KSCE J. Civ. Eng., vol. 27, no. 7, pp. 2940–2951, 2023, doi: 10.1007/s12205-023-0965-4.
  • [13] B.Y. Dagli, A. Ergut, and M.E. Turan, “Prediction of Natural Frequencies of Rayleigh Pipe by Hybrid Meta-Heuristic Artificial Neural Network,” J. Braz. Soc. Mech. Sci. Eng., vol. 45, p. 221, 2023, doi: 10.1007/s40430-023-04156-3.
  • [14] J.H. Tam, Z.C. Ong, and K.W. Ho, “Composite Material Identification Using a Two-Stage Meta-Heuristic Hybrid Approach Incorporated with a Two-Level FRF Selection Scheme,” J. Sound Vibr., vol. 456, pp. 407–430, 2019, doi: 10.1016/j.jsv.2019.05.033.
  • [15] B. Golany and F. Y. Phillips, “A Maximum-Entropy Based Heuristic for Density Estimation from Data in Histogram Form,” Decis. Sci., vol. 21, pp. 862–881, 1990.
  • [16] B. Majumder, “Black Hole Entropy and the Modified Uncertainty Principle: A Heuristic Analysis,” Phys. Lett. B, vol. 703, pp. 402–405, 2011, doi: 10.1016/j.physletb.2011.08.026.
  • [17] S. Chen, J. Li, W. Yuan, and Z. Gao, “Nonlinear entropy stable Riemann solver with heuristic logarithmic pressure augmentation for supersonic and hypersonic flows,” Comput. Math. Appl., vol. 141, pp. 33–41, 2023, doi: 10.1016/j.camwa.2023.03.024.
  • [18] D. Cohen and O. Strichman, “The Impact of Entropy and Solution Density on Selected SAT Heuristics,” Entropy, vol. 20, p. 713, 2018, doi: 10.3390/e20090713.
  • [19] A.A. Hassanain, M.A.A. Eldosoky, and A.M. Soliman, “Evaluating Building Performance in Healthcare Facilities Using Entropy and Graph Heuristic Theories,” Sci. Rep., vol. 12, p. 8973, 2022, doi: 10.1038/s41598-022-13004-8.
  • [20] D. Cuesta-Frau, M. Kouka, J. Silvestre-Blanes, and V. Sempere-PayáSlope, “Entropy Normalisation by Means of Analytical and Heuristic Reference Values,” Entropy, vol. 25, p. 66, 2023, doi: 10.3390/e25010066.
  • [21] J. Sánchez-Cañizares, “Is the Maximum Entropy Production Just a Heuristic Principle? Metaphysics on Natural Determination,” Synthese, vol. 201, p. 121, 2023, doi: 10.1007/s11229-023-04129-y.
  • [22] A. Puchalski and I. Komorska, “Stable Distributions, Generalised Entropy, and Fractal Diagnostic Models of Mechanical Vibration Signals,” Diagnostyka, vol. 18, no. 4, pp. 103–110, 2017.
  • [23] L. Pieczonka, A. Klepka, A. Martowicz, and W.J. Staszewski, “Nonlinear Vibroacoustic Wave Modulations for Structural Damage Detection: An Overview,” Opt. Eng., vol. 55, no. 1, p. 011005, 2016.
  • [24] J.C. Mejia, H.F. Quintero, J.D. Echeverry-Correa, and C.A. Romero, “Detection of Ice States From Mechanical Vibrations Using Entropy Measurements and Machine Learning Algorithms”. Diagnostyka, vol. 21, no. 4, pp. 87–94, 2020, doi: 10.29354/diag/130611.
  • [25] J. Kiciński, Rotor dynamics. IFFM Publishers, Gdańsk, 2006.
  • [26] J. Kiciński and G. Żywica, Steam Microturbines in Distributed Cogeneration. Springer, Switzerland, 2015, doi: 10.1007/978-3-319-12018-8.
  • [27] J. Kiciński, R. Drozdowski, and P. Materny, “The non-linear analysis of the effect of support construction properties on the dynamic properties of multi-support rotor systems,” J. Sound Vibr., vol. 206, no. 4, pp. 523–539, 1997, doi: 10.1006/jsvi.1997.1113.
  • [28] C. Nataraj and H.D. Nelson, “Periodic Solutions in Rotor Dynamic Systems with Nonlinear Supports: A General Approach,” J. Vib. Acoust. Stress Reliab. Design, vol. 111, pp. 187–193, 1989.
  • [29] K.V. Avramov and O.V. Borysiuk, “Nonlinear Dynamics of One Disk Asymmetrical Rotor Supported by Two Journal Bearings,” Nonlinear Dyn., vol. 67, pp. 1201–1219, 2012, doi: 10.1007/s11071-011-0063-x.
  • [30] A. Chasalevris and C. Papadopoulos, “A Novel Semi-Analytical Method for the Dynamics of Nonlinear Rotor-Bearing Systems,” Mech. Mach. Theory, vol. 72, pp. 39–59, 2014, doi: 10.1016/j.mechmachtheory.2013.09.014.
  • [31] C.A. Fonseca, I.F. Santos, and H.I. Weber, “Influence of Unbalance Levels on Nonlinear Dynamics of a Rotor-Backup Rolling Bearing System,” J. Sound Vibr., vol. 394, pp. 482–496, 2017, doi: 10.1016/j.jsv.2017.01.020.
  • [32] J. Latalski, M. Kowalczuk, and J. Warminski, “Nonlinear Electro-Elastic Dynamics of a Hub–Cantilever Bimorph Rotor Structure,” Int. J. Mech. Sci., vol. 222, p. 107195, 2022, doi: 10.1016/j.ijmecsci.2022.107195.
  • [33] A. Paiva, R.V. Moreira, A. Brandao, and M.A. Savi, “Nonlinear dynamics of a rotor–stator system with contacts,” Nonlinear Dyn., vol. 111, pp. 11753–11772, 2023, doi: 10.1007/s11071-023-08497-5.
  • [34] G. Żywica, M. Drewczynski, J. Kicinski, and R. Rzadkowski, “Computational Modal and Strength Analysis of the Steam Microturbine with Fluid-Film Bearings,” J. Vibr. Eng. Technol., vol. 2, no. 6, pp. 543–549, 2014.
  • [35] J. Kiciński and G. Żywica, “Prototype of the domestic CHP ORC energy system,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 2, pp. 417–424, 2016, doi: 10.1515/bpasts-2016-0047.
  • [36] T.Z. Kaczmarczyk, G. Żywica, and E. Ihnatowicz, “Vibroacoustic Diagnostics of a Radial Microturbine and a Scroll Expander Operating in the Organic Rankine Cycle Installation,” J. Vibroeng., vol. 18, no. 6, pp. 4130–4147, 2016, doi: 10.21595/jve.2016.17167.
  • [37] R. Rządkowski et al., “Design and Investigation of a Partial Admission Radial 2.5-kW Organic Rankine Cycle Micro-Turbine,” Int. J. Energy Res., vol. 44, pp. 11029–11043, 2020, doi: 10.1002/er.5670.
  • [38] P. Klonowicz, Ł. Witanowski, T. Suchocki, Ł. Jędrzejewski, and P. Lampart, “Selection of Optimum Degree of Partial Admission in a Laboratory Organic Vapour Microturbine,” Energy Conv. Manag., vol. 202, p. 112189, 2019, doi: 10.1016/j.enconman.2019.112189.
  • [39] D. Zaniewski et al., “Performance of the Honeycomb Type Sealings in Organic Vapour Microturbines,” Energy, vol. 226, p. 120242, 2021, doi: 10.1016/j.energy.2021.120242.
  • [40] P.J. Mago and R. Luck, “Energetic and Exergetic Analysis of Waste Heat Recovery from a Microturbine Using Organic Rankine Cycles,” Int. J. Energy Res., vol. 37, pp. 888–898, 2013, doi: 10.1002/er.2891.
  • [41] W.N. Macedo et al., “Biomass Based Microturbine System for Electricity Generation for Isolated Communities in Amazon Region,” Renew. Energy, vol. 91, pp. 323–333, 2016, doi: 10.1016/j.renene.2016.01.063.
  • [42] S. Daniarta, P. Kolasiński, A.R. Imre, and D. Sowa, “Artificial Intelligence-Driven Performance Mapping: A Deep Learning-Based Investigation of a Multi-Vane Expander in Retrofitted Organic Rankine Cycle,” Energy Conv. Manage., vol. 315, p. 118763, 2024, doi: 10.1016/j.enconman.2024.118763.
  • [43] F. Stefani and A. Rebora, “Steadily loaded journal bearings: Quasi-3Dmass–energy-conserving analysis,” Tribol. Int., vol. 42, pp. 448–460, 2009, doi: 10.1016/j.triboint.2008.08.006.
  • [44] T. Illner, D. Bartel, and L. Deters, “Determination of the Transition Speed in Journal Bearings under Consideration of Bearing Deformation,” Tribol. Int., vol. 82, pp. 58–67, 2015, doi: 10.1016/j.triboint.2014.09.023.
  • [45] A. Linjamaa, A. Lehtovaara, R. Larsson, M. Kallio, and S. Sochting, “Modelling and Analysis of Elastic and Thermal Deformations of a Hybrid Journal Bearing,” Tribol. Int., vol. 118, pp. 451–457, 2018, doi: 10.1016/j.triboint.2017.02.029.
  • [46] Z.H. Kadhim, L. Hammed, F.A. Rahima, and A.M. Ridha. “Elastohydrodynamic Analysis of a Journal Bearing with Different Grade Oils Considering, Thermal and Cavitation Effects Using CFD-FSI,” Diagnostyka, vol. 24, no. 2, p. 2023213, doi: 10.29354/diag/166102.
  • [47] A. Muszynska and P. Goldman, “Chaotic Responses of Unbalanced Rotor/Bearing/Stator Systems with Looseness or Rubs,” Chaos Solitons Fractals, vol. 5, no. 9, pp. 1683–1704, 1995.
  • [48] A. Grządziela, “Modelling of Propeller Shaft Dynamics at Pulse Load,” Pol. Marit. Res., vol. 15, pp. 52–58, 2008, doi: 10.2478/v10012-007-0097-7.
  • [49] P.M. Przybylowicz, Z. Starczewski, and P. Korczak-Komorowski, “Sensitivity of Regions of Irregular and Chaotic Vibrations of an Asymmetric Rotor Supported on Journal Bearings to Structural Parameters,” Acta Mech., vol. 227, pp. 3101–3112, 2016, doi: 10.1007/s00707-015-1541-x.
  • [50] C. Fu, W. Zhu, Z. Zheng, C. Sun, Y. Yang, and K. Lu, “Nonlinear Responses of a Dual-Rotor System with Rub-Impact Fault Subject to Interval Uncertain Parameters,” Mech. Syst. Signal Process., vol. 170, p. 108827, 2022, doi: 10.1016/j.ymssp.2022.108827.
  • [51] C. Fu, X. Ren, Y. Yang, and W. Qin, “Dynamic Response Analysis of an Overhung Rotor with Interval Uncertainty,” Nonlinear Dyn., vol. 89, pp. 2115–2124, 2017, doi: 10.1007/s11071-017-3573-3.
  • [52] J. Didier, J.-J. Sinou, and B. Faverjon, “Study of the Non-Linear Dynamic Response of a Rotor System with Faults and Uncertainties,” J. Sound Vibr., vol. 331, no. 3, pp. 671–703, 2012, doi: 10.1016/j.jsv.2011.09.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9b61b58-832a-48ce-9754-1e39ec7373b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.