PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Image encryption based on Chebyshev chaotic map and S8 S-boxes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The encryption of image data is artful as compare to others due to some special characteristics such as entropy, contrast, the correlation between the pixels, intensity, and homogeneity. During encryption process, it is conventionally not easy to manage these characteristics with non-chaotic cryptosystems. Therefore for the sake of strong encryption algorithms, in last decades many cryptographers have presented invulnerable schemes for image encryption based on the chaotic maps. This manuscript aims to propose a strong encryption scheme based on a symmetric group of permutation advanced encryption standard (AES) substitution boxes and modified Chebyshev map. Principally, the secret key depends upon the parameters of Chebyshev map to create confusion in the main image and is encrypted by the scheme made from the S8 AES S-boxes and chaotic map. By this procedure, one can obtain an encrypted image that is entirely twisted. The results of analyses showed that the presented image encryption is strong and invulnerable.
Czasopismo
Rocznik
Strony
317--330
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
  • Department of Mathematics, Statistics and Physics, Qatar University, Doha 2713, Qatar
autor
  • Department of Electrical Engineering, HITEC University, Pakistan
  • Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
  • Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
  • Department of Basic Sciences, University of Engineering and Technology, Taxila, Pakistan
autor
  • Department of Meteorology, Comsats Institute of Information Technology, Islamabad, Pakistan
Bibliografia
  • [1] NANRUN ZHOU, HAOLIN LI, DI WANG, SHUMIN PAN, ZHIHONG ZHOU, Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform, Optics Communications 343, 2015, pp. 10–21, DOI: 10.1016/j.optcom.2014.12.084.
  • [2] LIHUA GONG, XINGBIN LIU, FEN ZHENG, NANRUN ZHOU, Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique, Journal of Modern Optics 60(13), 2013, pp. 1074–1082, DOI: 10.1080/09500340.2013.831139.
  • [3] ANEES A., KHAN W.A., GONDAL M.A., HUSSAIN I., Application of mean of absolute deviation method for the selection of best nonlinear component based on video encryption, Zeitschrift für Naturforschung A 68(6–7), 2013, pp. 479–482, DOI: 10.5560/zna.2013-0022.
  • [4] ANEES A., AHMED Z., A technique for designing substitution box based on Van der Pol oscillator, Wireless Personal Communications 82(3), 2015, pp. 1497–1503, DOI: 10.1007/s11277-015-2295-4.
  • [5] LIHUA GONG, CHENGZHI DENG, SHUMIN PAN, NANRUN ZHOU, Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform, Optics and Laser Technology 103, 2018, pp. 48–58, DOI: 10.1016/j.optlastec.2018.01.007.
  • [6] JING YU, YUAN LI, XINWEN XIE, NANRUN ZHOU, ZHIHONG ZHOU, Image encryption algorithm by using the logistic map and discrete fractional angular transform, Optica Applicata 47(1), 2017, pp. 141–155,DOI: 10.5277/oa170113.
  • [7] NAN RUN ZHOU, TIAN XIANG HUA, LI HUA GONG, DONG JU PEI, QING HONG LIAO, Quantum image encryption based on generalized Arnold transform and double random-phase encoding, Quantum Information Processing 14(4), 2015, pp. 1193–1213, DOI: 10.1007/s11128-015-0926-z.
  • [8] HUAQIAN YANG, KWOK-WO WONG, XIAOFENG LIAO, WEI ZHANG, PENGCHENG WEI, A fast image encryption and authentication scheme based on chaotic maps, Communications in Nonlinear Science and Numerical Simulation 15(11), 2010, pp. 3507–3517, DOI: 10.1016/j.cnsns.2010.01.004.
  • [9] DEGANG YANG, XIAOFENG LIAO, YONG WANG, HUAQIAN YANG, PENGCHENG WEI, A novel chaotic block cryptosystem based on iterating map with output-feedback, Chaos, Solitons and Fractals 41(1), 2009, pp. 505–510, DOI: 10.1016/j.chaos.2008.02.017.
  • [10] AMIGÓ J. M., KOCAREV L., SZCZEPANSKI J., Theory and practice of chaotic cryptography, Physics Letters A 366(3), 2007, pp. 211–216, DOI: 10.1016/j.physleta.2007.02.021.
  • [11] ANEES A., GONDAL M.A., Construction of nonlinear component for block cipher based on one-dimensional chaotic map, 3D Research 6(2), 2015, article ID 17, DOI: 10.1007/s13319-015-0049-4.
  • [12] ANEES A., SIDDIQUI A.M., A technique for digital watermarking in combined spatial and transform domains using chaotic maps, IEEE 2nd National Conference on Information Assurance (NCIA), 2013, pp. 119–124, DOI: 10.1109/NCIA.2013.6725335.
  • [13] JAKIMOSKI G., KOCAREV L., Chaos and cryptography: block encryption ciphers based on chaotic maps, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48(2), 2001, pp. 163–169, DOI: 10.1109/81.904880.
  • [14] OTT E., Chaos in Dynamical Systems, 2nd Ed., Cambridge University Press, 2001.
  • [15] ALVAREZ G., LI S., Some basic cryptographic requirements for chaos-based cryptosystems, International Journal of Bifurcation and Chaos 16(8), 2006, pp. 2129–2151, DOI: 10.1142/S0218127-406015970.
  • [16] CICEK S., UYAROGLU Y., PEHLIVAN I., Simulation and circuit implementation of sprott case h chaotic system and its synchronization application for secure communication systems, Journal of Circuits, Systems and Computers 22(4), 2013, article ID 1350022, DOI: 10.1142/S0218126613500229.
  • [17] AHMED F., ANEES A., ABBAS V.U., SIYAL M.Y., A noisy channel tolerant image encryption scheme, Wireless Personal Communications 77(4), 2014, pp. 2771–2791, DOI: 10.1007/s11277-014-1667-5.
  • [18] AHMED F., ANEES A., Hash-based authentication of digital images in noisy channels, [In] Robust Image Authentication in the Presence of Noise, [Ed.] N. Zivic, Springer International Publishing, 2015, pp. 1–42, DOI: 10.1007/978-3-319-13156-6.
  • [19] ANEES A., SIDDIQUI A. M., AHMED J., HUSSAIN I., A technique for digital steganography using chaotic maps, Nonlinear Dynamics 75(4), 2014, pp. 807–816, DOI: 10.1007/s11071-013-1105-3.
  • [20] ANEES A., SIDDIQUI A. M., AHMED F., Chaotic substitution for highly autocorrelated data in encryption algorithm, Communications in Nonlinear Science and Numerical Simulation 19(9), 2014, pp. 3106 –3118, DOI: 10.1016/j.cnsns.2014.02.011.
  • [21] PEHLIVAN I., ZHOUCHAO WEI, Analysis, nonlinear control, and chaos generator circuit of another strange chaotic system, Turkish Journal of Electrical Engineering and Computer Sciences 20, 2012, pp. 1229–1239, DOI: 10.3906/elk-1103-14.
  • [22] PARESCHI F., SETTI G., ROVATTI R., Implementation and testing of high-speed CMOS true random number generators based on chaotic systems, IEEE Transactions on Circuits and Systems I: Regular Papers 57(12), 2010, pp. 3124–3137, DOI: 10.1109/TCSI.2010.2052515.
  • [23] OZKAYNAK F., Cryptographically secure random number generator with chaotic additional input, Nonlinear Dynamics 78(3), 2014, pp. 2015–2020, DOI: 10.1007/s11071-014-1591-y.
  • [24] HUSSAIN I., SHAH T., MAHMOOD H., A new algorithm to construct secure keys for AES, International Journal of Contemporary Mathematical Sciences 5(26), 2010, pp. 1263–1270.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9b20ed4-cafd-40ae-9a9e-51fa38942cd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.