PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dynamic finite element analysis of rotor-shaft fastening into a heavy precise lathe

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of finite element analysis of large machined rotor fastened into heavy precise lathe are reported. Many design changes are simulated to improve the dynamic rigidity of the machining. Three radial eigenmodes detrimental to the accuracy were revealed: rotor-stock bending at 17.7 Hz (“half-wave”), rotor-lathe bending at 36.1 Hz (“full-wave”), and “support rocking” at 68.1 Hz. The frequency response functions and dynamic rigidities were evaluated. Three compliance issues were revealed: angular flexibility of the spindle console, low stiffness of the lathe bed (with boots), and an excessively slender tailstock. It is proposed to transform the spindle chuck into a table with additional hydrostatic backing, fill the bed cavities with concrete, and redesign the tailstock as a counter-spindle unit. This will decrease the amplitude of the main rotor resonance by 6.3 times and upshift the frequency near two-fold from 17.7 to 35 Hz. The renovated lathe should be able to machine a rotor without a lunette system or overriding the main resonant frequency.
Rocznik
Strony
37--45
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Belarusian National Technical University, Mechanical Engineering Faculty 65 Nezalezhnasci St., 220127 Minsk, Belarus
  • Maritime University of Szczecin, Faculty of Marine Engineering 1-2 Waly Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
  • 1. Anand, A. & Roy, H. (2018) Static and Dynamic Analysis of Lathe Spindle using ANSYS. International Journal of Applied Engineering Research 13, 9, pp. 6994–7000.
  • 2. Choi, Y.H., Ha, G.B. & An, H.S. (2014) Stiffness Evaluation of a Heavy-Duty Multi-Tasking Lathe for Large Size Crankshaft Using Random Excitation Test. Journal of the Korean Society for Precision Engineering 31(7), pp. 627–634.
  • 3. Dornfeld, D. & Lee, D.-E. (2008) Precision Manufacturing. Springer.
  • 4. Dounar, S.S. (2017) Virtual investigation of static deformations of the rotor-shaft into the extra heavy lathe. Theoretical and Applied Mechanics 32, pp. 72–78.
  • 5. Dounar, S.S., Iakimovitch, A.M., Ausiyevich, A.M. & Jakubowsky, A. (2018a) FEA-analysis of shaft and supports deformations for huge precise lathe; statics and resonances. New trends in productive engineering, vol. 1, issue 1.
  • 6. Dounar, S.S., Iakimovitch, A.M., Azhar, A.U. & Kuchynskaya, N.A. (2018b) FEA analysis of heavy lathe support rigidity for statics and dynamics. Mashinostroenie 31. Minsk.
  • 7. Dounar, S.S., Iakimovitch, A.M. & Jakubowski, A. (2020) Finite Element Method analysis of the deformation of the shaft and supports of the large, precise lathe – Cutting force excitation. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 62 (134), pp. 91–98.
  • 8. Fedorynenko, D., Sapon, S. & Boyko, S. (2016) Accuracy of Spindle Units with Hydrostatic Bearings. Acta Mechanica et Automatica 10(2), pp. 117–124.
  • 9. Jafarzadeh, E. & Movahhedy, M.R. (2017) Numerical simulation of the interaction of mode coupling and regenerative chatter in machining. Journal of Manufacturing Processes 27, pp. 252–260.
  • 10. López de Lacalle, L.N. & Lamikiz, A. (Eds) (2008) Machine Tools for High Performance Machining. Springer.
  • 11. Muhammad, B.B., Wan, M., Feng, J. & Zhang, W.-H. (2017) Dynamic damping of machining vibration: a review. International Journal of Advanced Manufacturing Technology 89, pp. 2935–2952.
  • 12. Rowe, W.B. (2012) Hydrostatic, Aerostatic, and Hybrid Bearing Design. Elsevier.
  • 13. Simon, M., Grama, A.L. & Ganea, M. (2012) Study of improving static rigidity on machine tool structure using concrete component. The 6th edition of the Interdisciplinarity in Engineering. International Conference “Petru Maior” University of Tîrgu Mureş, Romania, pp. 6–29.
  • 14. Vasilevich, Y.V. & Dounar, S.S. (2017) Finite element analysis of centreless-lunette turning of heavy shaft. Science & Technique 16(3), pp. 196–205.
  • 15. Vasilevich, Y.V., Dounar, S.S. & Karabaniuk, I.A. (2016) Finite element analysis of concrete filler influence on dynamic rigidity of heavy machine tool portal. Science & Technique 15(3), pp. 233–241.
  • 16. Vasilevich, Y.V., Dounar, S.S., Truskovsky, A.S. & Shumsky, I.I. (2015) Modeling and analysis of dynamics in bearing system of drilling, milling, and boring machine with mono-column. Science & Technique 3, pp. 9–19.
  • 17. Zienkiewicz, O.C. & Taylor, R.L. (2000) The finite element method. Volume 1: The Basis. Fifth edition. Oxford: Butterworth-Heinemann.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9b0277e-5e3a-460e-915d-5b9320cc031d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.